
In
trod

u
ction to G

am
eP

hysics with B
ox2D

Introduction to
Game Physics

with Box2D
Ian Parberry

Introduction to
Game Physics
with Box2D

Ian Parberry

Computer Game Programming

Written by a pioneer of game development in academia, Introduction
to Game Physics with Box2D covers the theory and practice of 2D
game physics in a relaxed and entertaining yet instructional style.
It offers a cohesive treatment of the topics and code involved in
programming the physics for 2D video games.

Focusing on writing elementary game physics code, the first half
of the book helps you grasp the challenges of programming game
physics from scratch, without libraries or outside help. It examines
the mathematical foundation of game physics and illustrates how it is
applied in practice through coding examples. The second half of the
book shows you how to use Box2D, a popular open source 2D game
physics engine. A companion website provides supplementary
material, including source code and videos.

This book helps you become a capable 2D game physics program-
mer through its presentation of both the theory and applications of
2D game physics. After reading the book and experimenting with
the code samples, you will understand the basics of 2D game physics
and know how to use Box2D to make a 2D physics-based game.

Parberry.indd 1 12/18/12 10:45 PM

Introduction to
Game Physics

with Box2D

This page intentionally left blankThis page intentionally left blank

Introduction to
Game Physics

with Box2D

Ian Parberry

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2013 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20130318

International Standard Book Number-13: 978-1-4665-6577-7 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts
have been made to publish reliable data and information, but the author and publisher cannot assume
responsibility for the validity of all materials or the consequences of their use. The authors and publishers
have attempted to trace the copyright holders of all material reproduced in this publication and apologize
to copyright holders if permission to publish in this form has not been obtained. If any copyright material
has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, trans-
mitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter
invented, including photocopying, microfilming, and recording, or in any information storage or retrieval
system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.
com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood
Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and
registration for a variety of users. For organizations that have been granted a photocopy license by the
CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are
used only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

For my daughters Lizzie, Kate, and Maggie.

Study hard what interests you the most
in the most undisciplined, irreverent

and original manner possible.
— Richard Feynman

This page intentionally left blankThis page intentionally left blank

Contents

Preface xi

1 Read Me First 1
1.1 Why Does This Book Exist? 1

1.2 Preconditions . 4

1.3 Postconditions . 5

1.4 Programming Style . 9

1.5 Supplementary Material 11

I Introduction to Game Physics 13

2 Mathematics for Game Physics 15
2.1 Geometry and Linear Algebra 15

2.2 Reflections on Reflection 26
2.3 Digital Calculus . 36

2.4 Relaxation . 46

2.5 Exercises . 49

3 A Rigid Body Physics Game 51
3.1 The Eight-Ball Pool End Game 51

3.2 Code Run-Through . 55

3.3 Render World . 61
3.4 Object World . 63

3.5 Objects . 71

3.6 Exercises . 78

vii

viii CONTENTS

4 A Soft Body Physics Toy 81
4.1 Particles . 85

4.2 Springs . 90

4.3 Soft Bodies . 94

4.4 Ragdoll Physics . 104

4.5 Exercises . 109

II Game Physics with Box2D 111

5 Getting Started 113
5.1 Download and Set Up Box2D 113

5.2 Overview of Box2D . 115

5.3 Units . 118

5.4 Our First Box2D App . 119

5.5 Exercises . 128

6 A Tale of Three Modules 131
6.1 The Common Module . 131

6.2 The Math Library . 134

6.3 The Collision Module . 139

6.4 Shapes . 143

6.5 The Dynamics Module . 148

6.6 Joints . 153

6.7 Exercises . 160

7 The Cannon Game 161
7.1 The Platform and the Tower 165

7.2 The Heads-Up Display . 169

7.3 The Object World . 172

7.4 The Cannon Object . 174

7.5 The Frame Loop and the Keyboard Handler 192

7.6 Son et Lumière . 195

7.7 Exercises . 197

8 The Collision Module 201
8.1 Contacts and Manifolds 201

8.2 Contact Listeners . 206

8.3 AABBs . 213

8.4 Dynamic Trees . 216

8.5 Exercises . 226

CONTENTS ix

III Appendices 229

A For Math Geeks Only 231

B The Blacke Arte of Program Debugging 235
B.1 The Debug printf . 236
B.2 Zen and the Art of Debugging 236

C There Are, in Fact, Dumb Questions 239
C.1 Lies of π . 239
C.2 Quis Custodiet Ipsos Auditores? 242

D Bullet Physics 247
D.1 Getting Started . 248
D.2 The Dynamics World . 249
D.3 Adding Objects . 250
D.4 Rigid Body Dynamics . 251
D.5 Motion States . 251
D.6 Render Frames and Physics Frames 252

Bibliography 255

Index 257

This page intentionally left blankThis page intentionally left blank

Preface

This is a book that is very much in the spirit of the Feynman quote on the
dedication page, an undisciplined, irreverent, and original book on how to
program the physics used in 2D video games. If you are looking at it for
the first time, then your mind is probably abuzz with questions.1 Here are
brief answers to some of the more obvious ones.

• Why 2D Game Physics?

2D game physics is a practical and useful thing to know. It is practical
because it has been used in successful commercial 2D video games.2 It
is useful because even if you are not interested in 2D game physics in its
own right, you’ll find that moving from 2D to 3D game physics is relatively
easy.3

• Why Box2D?

Box2D is a popular Open Source 2D game physics package that has been
used in successful commercial 2D video games.4

• Why is This Book in Two Parts?

I imagine you, the reader, to be the novice standing at the left of this picture
who wants to be the trained and capable 2D game physics programmer on

...........................
1If not, then it should be. Question everything. (Your response to that statement

should of course be Why?)
2At least one of them involving cranky birds.
3Compared to, say, the difficulty of moving from 2D to 3D graphics.
4Including the one with the cranky birds.

xi

xii Preface

the right. Between these two there is a morass of things to know about,
like vectors and positions, bodies, angles, and floating-point numbers.

Box2D is a bridge to help you get to the other side.

I could write a book that tells you how this bridge is constructed, but how
many people want to be a bridge builder? All you want to do is use and
maybe modify the bridge, not build a new one. You need to know a little
about how it’s built, but you don’t need to understand it at the same level
that a bridge builder would. Instead, I’m going to show you how the two
ends of the bridge are constructed, and I’m going to let you swing across
the middle because rope swings are a lot more fun than building bridges.

Preface xiii

• Is There Code Online?

Yes. You can download the source code used in this book and also see short
video clips and get supplementary material from [Parberry 12].

What Platform is the Code Written For?5

The code is written in C++ for Microsoft Visual Studio 10, and comes
with a full set of Visual Studio Solutions and Projects. It uses DirectX 9
for graphics.

• Why Does This Book Have So Much Code in It?

This book is aimed at mid-level programmers. The best way for a mid-level
programmer to improve is to read somebody else’s code. Read my code,
adopt the things that resonate with you, and invent your own style that
overcomes what you see as the drawbacks in mine.6

• Why Does This Book Have So Much Math in It?

I’m afraid you can’t get away from it, game physics needs a lot of math.
I’m going to try to connect up all the pieces of math that you need and
take a few stabs at explaining why they are true so that you can hopefully
...........................

5Yes, I know that this should read, “For What Platform is the Code Written?”
Winston Churchill was once criticized by a subordinate for ending a sentence with a
preposition like this. He is reputed to have replied, “That is the kind of insubordination
up with which I will not put.” So bite me.

6I will admit that my style is a bit cramped by the limitations of the printed page.
My code usually has longer lines, about double the width of what you see here.

•

xiv Preface

visualize them all, see the connections, and understand how they work
rather than memorize them or look them up in a table.

• What Does This Book Give Me That I Can’t Find Online?

It’s true that you’ll find lots of manuals, tutorials, and code demos on
2D game physics and Box2D online. They’re free, and some of them are
excellent. What this book does is address many of the same subjects but
as a unified, cohesive whole. It also addresses some of the gaps in the
online knowledge base, for example, that of actually building a game based
on a physics engine once you understand it. Section 1.1 will answer this
question in more detail.

• What Do I Need to Know Before I Start?

You need to know some math and some programming. This is not a book
for the faint of heart. Section 1.2 will answer this question in more detail.

• What Will I Know When I’m Finished?

If you’ve paid attention, read carefully, and experimented with the code
samples, then you will know the basics of 2D game physics and how to
go about using Box2D to make a 2D physics-based game. Section 1.3 will
answer this question in more detail.

• Why Are Some Exercises Starred?

They are the tricky ones.

• Who is Ian Parberry?

I’m a full professor in the Department of Computer Science and Engineering
at the University of North Texas. I got my PhD in 1984. Since then, I’ve
published 65 refereed research papers in academic journals and conferences,
23 of them on game development. This is my seventh book, my fourth
about game development. Google me.

• What Does He Know about Teaching Game Programming?

I’ve been teaching game programming classes since 1993. Alumni from
these classes can be found in game development positions in the Console,
PC, Online, Casual, Serious, and Casino game markets. They have 245
credits on 143 games that have sold over 180 million copies, grossing over
$9 billion in revenue. My most distinguished alumnus is Jason West, co-
founder of the Call of Duty franchise.

1
Read Me First

Before we get started, let’s take a look at why this book exists, what I
expect you to know before you can start reading it, what the stuff inside
will be like stylistically, and what you can expect to get out of it if you put
a reasonable amount of effort into it.

• 1.1 Why Does This Book Exist?
One thing that has changed in academia over the last 30 years is that
we professors are no longer the Source of All Knowledge. In 1984 when
I started out as a young assistant professor, the books and papers that
we taught from were sparse and often difficult to obtain. Happily, the
Internet has changed all that. Knowledge is everywhere. What we need to
teach students now is understanding,1 not knowledge, which is something
that we would have liked to have done all along, but we were stunned into
complacency by the burden of memorization, repetition, and standardized
tests.

Students thrive when they have an easy on-ramp to understanding dif-
ficult material. Let’s use a visual metaphor to explain what I mean. When
students are faced with a large block of new and difficult material (be-
low, left) that they want to get on top of, they turn to manuals, tutorials,
newsgroups, books, papers, whatever information they can gather together
on the subject both online and in what we old-timers laughingly call the
Real World. What they usually end up with is a jumble of mismatched

...........................
1How would I define understanding? See my 1997 paper [Parberry 97].

1

2 1 • Read Me First

and odd-shaped pieces of knowledge that are frustrating to put together
(right):

Some of the documents that they find get too hard too fast, which means
a steep on-ramp (below left). That could be because the author is very
smart and has forgotten what it’s like to be a beginner, or because he
or she is writing for a very smart audience. On the other hand, some of
the documents stay at a very shallow level, which can be slow and boring
and not of much help in getting on top of the difficult material (right).
These are often written by authors who think it is useful to teach very
young children how to do trivial things with a computer, while ignoring
the really difficult question of how to get them from there to the top of
the block. (I suppose it’s another example of Douglas Adams’ “Somebody
Else’s Problem” field in action.)

Sometimes the author just isn’t very good at presenting the material,
switching from very easy stuff to very hard stuff without warning (left)
or leaving gaps that the average reader finds insurmountable (right):

Even worse, the material could be so badly organized that it’s hardly an
on-ramp at all. This often happens with new authors when their level of
excitement is high and their organizational and pedagogical skills are low:

1.1 •Why Does This Book Exist? 3

In my experience, students want an on-ramp that is neither too steep nor
too flat, leading them almost to the top of the difficult material on a path
that is as smooth and continuous as possible:

An on-ramp for game physics should probably be in 2D because it has
almost all of the richness and complexity of 3D game physics, but it is, in a
sense, only two-thirds as difficult since it is only missing a dimension. This
is not so with game math (geometry and linear algebra). You could say
that 2D game math is only one-third as hard as 3D game math because
the former has only one axis of rotation while the latter has three. The
Irish mathematician Sir William Rowan Hamilton (1805–1865) discovered
this to his dismay when he tried to generalize the concept of 2D rotations
as complex numbers into three dimensions.2

You can imagine how happy I was when I found Box2D, Erin Catto’s
excellent Open Source 2D physics engine [Catto 12]. It is, in my opinion,
the ideal code base for teaching game physics. It is much less complex than
a 3D physics engine, which means that students have a chance of mastering
it during part of a 15-week semester. It requires only the addition of a 2D
rendering engine to make a game, which is ideal for classroom use because,
in my experience, a 2D minigame can be constructed in a few thousand
lines of C++ code, whereas even a very simple 3D game starts at tens of
thousands of lines of C++ code (for example, SAGE [Parberry et al. 07]).

Box2D is a real game physics engine in the sense that it has been used in
some successful commercial games. Students like getting experience with a
real piece of software instead of classroom code wherever they can. Best of
all, Box2D is Open Source (which means it is free), it has a large and active
online community behind it (which means it is relatively stable and bug-
free), and it has been ported to multiple platforms (which means you can
use it in your classes no matter what platform your students are proficient
in).

So why this book? Box2D comes with an excellent online manual,
but it’s more useful for people who know what they’re doing than it is to
newbies. There are lots of tutorials and code examples online, but they are
fragmentary and of variable quality, running the gamut from incoherent to
excellent. My intention is to put all of this material together and craft it
into a relatively smooth on-ramp for beginners.
...........................

2He thought that he would need two imaginary parts, but he was blocked until he
realized in 1843 that three imaginary parts are necessary and sufficient. The resulting
objects were called quaternions. See [Dunn and Parberry 11] for more information.

4 1 • Read Me First

• 1.2 Preconditions
Let’s talk about what you need to know before you can start reading this
book. These are what a programmer would call preconditions and an edu-
cator would call prerequisites.

I hope you’re not afraid of mathematics. You should be familiar with
a certain amount of high-school and early college mathematics, most im-
portantly, linear algebra and geometry. Calculus up to the Fundamental
Theorem of Calculus would be helpful too, but all I really expect from
you in this area is a vague feeling of déjà vu. I’ll also be using a certain
amount of what used to be called mechanics, a subject usually taught in
applied mathematics or physics classes. If you can remember being taught
s = ut+ at2/2, then you are probably good to go.

Since this is a book about programming, I expect you to be able to write
and debug code. Speaking of debugging, I am often struck by the fact that
while we spend hours teaching students how to program, we spend very
little time teaching them how to debug, yet even professional programmers
seem to find themselves spending half3 their time debugging. Some instruc-
tors never mention it, some give it passing mention, some even make it seem
that having bugs is a shameful thing that should never be mentioned in
polite society.4 See Appendix B for some of my debugging tips.

To get the most out of this book you must be familiar with the C++
programming language and the object-oriented philosophy upon which it
is based. The supplementary code that goes with this book will be written
using Microsoft Visual Studio 10 and DirectX 9.0. If you are unfamiliar
with these, I suggest that you get familiar with them fast. To get a job
in the game industry, you need to be flexible and omnivorous about pro-
gramming. You should be able to program for the major programming
environments5 and, more importantly, be able to learn new ones fast. Your
mantra should be “If it takes code, then I can program it.”

• IMPORTANT POINT •
You need to have Visual Studio 10 and the DirectX 9.0 SDK installed on your computer before
you can begin working with the source code. Obviously you need a PC running Windows.
Visual Studio 10 is commercial software, but if you are a student, your school may very well
have an MSDNAA subscription, in which case you can get it for free. The DirectX 9.0 SDK is
a free download.

Sometimes it makes more sense pedagogically to look at more abstract
algorithms and data structures rather than code. It might help to familiar-
...........................

3“Half” here is a technical term meaning “lots of,” or “beaucoup de” in French.
4Like having bedbugs.
5By “programming environment,” I mean target hardware, target operating system,

programming language, and development tools.

1.3 • Postconditions 5

ize yourself with balanced trees by consulting a standard Algorithms text
such as [Cormen et al. 01] before you read Section 8.4.

• 1.3 Postconditions
You’re probably interested in what you’ll gain from mastering this book.
These are what a programmer would call postconditions and an educator
would call outcomes. Let me list the expected outcomes chapter by chapter.

• Part I: Introduction to Game Physics

Part I is designed to help you come to grips with the trials and tribulations
of programming game physics from scratch, by hand, with no libraries or
outside help. It consists of three chapters.

• Chapter 2: Mathematics for Game Physics

We start off pedal to the metal by examining the mathematical foundation
of game physics and how it can be applied in practice. We’ll be doing some
geometry, linear algebra, and calculus. Thanks to René Descartes, we learn
that geometry and linear algebra are really the same thing, which is really
great news. The expected outcomes for Chapter 2 are

1. understanding of vectors, angles, and reflection;

2. recollection of the suppressed memories of how much we hated the
linear algebra and geometry classes we took in school;

3. realization that we didn’t need to pay for two classes when they’re
really the same thing;

4. understanding of exactly why atan2(a,b) is better than atan(a/b);

5. a vague recollection that sines and cosines have something to do with
horses and hippies;

6. understanding the concepts of Euler integration and Verlet integra-
tion and their roles in game physics;

7. knowledge of the mathematical technique of relaxation;

8. realization that despite the hairy math and the scary names, Verlet
integration and Gauss-Seidel relaxation are just a couple of lines of
code.

• Chapter 3: A Rigid Body Physics Game

Now we put the concepts learned in Chapter 2 to the test by coding the
end game in eight-ball pool. The expected outcomes for Chapter 3 are

6 1 • Read Me First

1. knowledge of simple methods for the computation of motion and im-
pulse,

2. ability to recognize where code for 2D physics fits into a game,

3. familiarity with the supporting game code used throughout this book,

4. sudden desire to play eight-ball in real life.

• Chapter 4: A Soft Body Physics Toy

Having been introduced to the theory of Verlet integration and Gauss-
Seidel relaxation in Chapter 2, we now examine code for a Ball and Spring
Toy, which allows you to play with various springy things and a ragdoll
robot named Woodie. The expected outcomes for Chapter 4 are

1. familiarity with the use of Verlet integration for programming game
physics,

2. experience with applying Gauss-Seidel relaxation to implement springs
and sticks,

3. familiarity with using Verlet integration and Gauss-Seidel relaxation
to implement ragdoll physics.

• Part II: Game Physics with Box2D

Now that you’ve mastered the basics in Part I, you are ready for Part II,
which shows you how to use Box2D to go beyond the baby steps in Part I.
It consists of four chapters.

• Chapter 5: Getting Started

Chapter 5 gets you started with Box2D by showing you how to download it
and integrate it with your game code. After running you quickly through
the basic concepts, this chapter demonstrates the process with a quick toy
that lets you drop balls and books out of the sky. The expected outcomes
for Chapter 5 are

1. Box2D correctly downloaded and integrated with Visual Studio,

2. knowledge of the basic concepts used in Box2D,

3. understanding that physics units should not be pixels,

4. experience with using Box2D in a simple application.

• Chapter 6: A Tale of Three Modules

Chapter 6 goes into some details of the three modules that make up Box2D,
the Common Module, the Collision Module, and the Dynamics Module. The
expected outcomes for Chapter 6 are

1.3 • Postconditions 7

1. knowledge of the what basic functions are included in the math library
in the Common Module;

2. understanding of the role of the Collision Module, what contact man-
ifolds are, and how broad-phase collision detection works;

3. knowledge of the shapes that Box2D provides;

4. understanding of the role of the Dynamics Module, what the Physics
World is, and what fixtures and bodies are;

5. understanding of what the Integrator and the Constraint Solver do,
and what parts of the Ball and Spring Toy in Chapter 4 they corre-
spond to;

6. knowledge of the joints that Box2D provides.

• Chapter 7: The Cannon Game

The Cannon Game gives the player control of a cannon in a world with a
tempting tower of books. The player’s job is to knock down the tower in
60 seconds or less by firing cannonballs at it. The expected outcomes for
Chapter 7 are

1. knowledge of how to use Box2D to create a simple game;

2. familiarity with Box2D bodies, fixtures, and joints;

3. ability to knock down a tower of books with a cannon.

• Chapter 8: The Collision Module

Chapter 8 drills down a little into the Collision Module. It starts by look-
ing more closely at contacts and contact manifolds before introducing the
contact listener, which is an efficient way of having Box2D notify your pro-
gram about collisions. It finishes with some heavy geek stuff about AABBs
and dynamic trees. The expected outcomes for Chapter 8 are

1. deeper understanding of how a contact manifold works,

2. understanding of why the userData field in b2BodyDef is so useful,

3. understanding of what a contact listener is and of what events are
likely to cause its PreSolve function to be called,

4. knowledge of how to get information from a contact manifold in the
contact listener’s PreSolve function,

5. experience with using a contact listener to monitor collisions,

6. knowledge of what AABBs are and how dynamic trees work.

8 1 • Read Me First

• Part III: Appendices

Part III consists of four appendices containing things that are useful but
tangential to the major theme of this book. This is like the bonus scene at
the end of a movie except that you don’t have to sit through the credits to
see it.

• Appendix A: For Math Geeks Only

Appendix A contains a neat proof of identities for sin(α+β) and cos(α+β).
The expected outcomes for Appendix A are

1. recollection of the suppressed memories of how much we really hated
the linear algebra and geometry classes we took in school.

• Appendix B: The Blacke Arte of Program Debugging

Appendix B has some observations about debugging, a Blacke Arte if ever
there was one. The expected outcomes for Appendix B are

1. appreciation for the debug printf,

2. less stress when bugs appear,

3. inexplicable fondness for pipes and deerstalker hats.

• Appendix C: There Are, in Fact, Dumb Questions

Appendix C introduces an important concept, the idea of actually sitting
down and experimenting with code until you understand it. That way you
don’t have to ask so many dumb questions. The expected outcomes for
Appendix C are

1. reduction in the need to ask dumb questions,

2. increased confidence in your own abilities,

3. increased appearance of competence.

• Appendix D: Bullet Physics

Appendix D is a brief primer on using Bullet physics, just to pique your
interest. The expected outcomes for Appendix D are

1. understanding that Bullet physics and Box2D are quite similar,

2. increased desire to go out and learn 3D game physics,

3. realization that having learned 2D game physics and Box2D from this
book, you now know enough go out and learn 3D game physics and
Bullet physics by yourself.

1.4 • Programming Style 9

Figure 1.1 • The two principal Game Engine Worlds and how they relate to each
other and to the Real World.

• 1.4 Programming Style
Stylistically, I’m going to be taking what Buddhists calls the middle road
between academic ivory-towerism and wishful thinking about programming
on one side and the harsh realities of professional coding on a budget and
a deadline on the other side.

• 1.4.1 Object-Oriented Programming

I intend to use object-oriented programming (OOP) as a method of data-
hiding. The ideal is that each C++ class knows only what it needs to know
and gives out that information only in certain prescribed ways. Other
classes that need to operate on that information must either ask the class
that owns it to give it out or ask it to perform that operation for it. This has
two advantages. The first is that it provides a measure of bug deterrence
by limiting the unexpected consequences of a new class meddling with
information that is needed elsewhere in the program. Secondly, it helps
limit the amount of spaghetti code in which it is not clear what segment
of code has responsibility for which abstract operation.

However, I’m not going to be rigid about data hiding. There are some
things that are going to be right out there in a global variable—pointers to
things deep in the mesh of objects and inheritance that can cause endless
disruption if they are accidentally or intentionally abused. However, hiding
them would involve convoluted code that is hard to understand and in
the Real World, there would be enough of them to cause a significant
performance hit.

I’ll be using OOP to encapsulate my game code into two separate Game
Engine Worlds: Object World, which is a world of abstractions about the
objects in the game; and Render World, which is a world of sprites, pixels,
and display devices. Render World is tied to the Real World through
devices; the player gets information from the Render World via the video
screen. The two worlds and their relationships are shown in Figure 1.1.

10 1 • Read Me First

Figure 1.2 • How Object World and Render World cooperate to draw the screen
in the Real World.

Since the Object World contains only abstractions that are completely
device-independent, moving from one graphics platform to another (say,
from DirectX to OpenGL) should involve changing only the Render World.

Let’s look at a quick run-through of how Object World and Render
World interact in Figure 1.2. It begins with the game loop somewhere in
a file that we’ll call MyGame.cpp. Within that loop, your code will call a
function RenderFrame to render a frame of animation to the video screen.
RenderFrame at some point will ask Object World to draw the objects in
the game, including a pirate. RenderFrame can’t ask Render World to draw
the pirate yet, because while Render World contains the pirate’s sprite read
in from a file, it doesn’t know the pirate’s location. Object World knows
that, so it tells it to Render World, which now has all of the information
that it needs to know. It has a renderer, which it uses to draw the pirate
to the screen.

It is worth noting that the two Game Engine Worlds measure things
in their own units, using their own rulers. The Render World is tied to

1.5 • Supplementary Material 11

the graphics hardware, which may use integers for pixel coordinates and
RGB color quads, and floating point numbers for pixel and vertex shader
calculations. Since Object World is a world of abstractions, the program-
mer is almost completely free to use whatever unit of measurement that
he or she finds convenient. It is tempting to use screen coordinates even
for a 3D world that is many thousands of screen-widths wide. While this
is relatively harmless for single-screen games such as the ones you will see
in this book, it can ultimately be very harmful, as we will see later.

• 1.4.2 Variable Naming Convention

You were probably taught in programming class that “variable names
should reflect their function.” I’m guessing that you mostly ignored that
advice while making a half-hearted attempt to use sensible-ish names often
enough to make the instructor happy, or at least not so unhappy that he or
she deducts the 10 points allocated for the somewhat nebulous concept of
“program style.” Here are the naming conventions that I will try to abide
by in this book.6

My global variable names will start with “g_” and my member variable
names will start with “m_”. These will be followed by a few lowercase let-
ters that indicate the variable’s type (for example, n for an integer, f for a
floating point number, b for a Boolean, and p for a pointer), followed by a
descriptive name in lowercase and uppercase letters, used judiciously to sep-
arate out words, starting with an uppercase letter. When you are reading
my code, you will be able to tell instantly that, for example, m_bIsFinished
must be a Boolean member variable that records whether or not something
is finished, g_pObjectList is a global pointer variable that points to a list
of objects, and count is just a local variable or function parameter that is
in use only temporarily.

You will see me making occasional use of global variables, a practice
that is frowned upon by many academics. My approach to global variables
is this: if, like the Highlander, “there can be only one,” then you may as
well make it global, particularly if you would otherwise end up passing it
as a parameter to scads of functions.

• 1.5 Supplementary Material
You will find supplementary material including source code online at [Par-
berry 12].

...........................
6You may be tempted to call me obsessive, at least until you’re awake at 4am on a

deadline trying to read code that you wrote three months ago.

This page intentionally left blankThis page intentionally left blank

Part I

Introduction to Game Physics

This page intentionally left blankThis page intentionally left blank

2
Mathematics for Game Physics

Game physics uses mathematics as a tool. I’m afraid you can’t get away
from it, so take a deep breath and let’s go. I’ll try to start this off as simply
as possible, but things are going to get complicated fast. Section 2.1 shows
you some of the most important things from geometry and linear algebra
that you are going to need in game physics: vectors, trigonometry, the
Pythagorean Theorem and Identity, the Law of Cosines, and orientation.
Section 2.2 is about reflection, meaning that we’re going to be bouncing
balls off things to see how they behave. The proper name for this is collision
response. Section 2.3 is about digital calculus, mainly integration, which
is the part of calculus that people often find the scariest. Starting with
Euler integration, we thankfully find that we don’t need to integrate at
all, we just need to sum. That’s good because computers are excellent at
adding things up fast. Verlet integration is another useful way to not do
integration. Game physics is sometimes about satisfying constraints using
a technique called relaxation covered in Section 2.4. It turns out that we
can take a pretty relaxed approach to that.

• 2.1 Geometry and Linear Algebra
The French philosopher and mathematician René Descartes (1596–1650) is
noted for, amongst other things,1 noticing that linear algebra and geometry
are in fact one and the same thing. Anything you can do with linear algebra
you can also do with geometry, and vice versa. This is not immediately
obvious because Linear Algebra World is a world of symbolic mathematics
...........................

1For example, he’s the “I think, therefore I am” guy.

15

16 2 • Mathematics for Game Physics

Figure 2.1 • Summary of the main results in this section, with their dependencies
and places in which we will apply them.

that has things like vectors and matrices in it, whereas Geometry World is
a world of pictures that has things like lines and angles in it.

It’s handy for us that they are the same thing because linear algebra is
what goes on inside your computer, and geometry is what you see on the
screen. The video card is the piece of hardware that translates from one
to the other, and it is thanks to Descartes’ observation that it can do it at
all. The CPU talks to the video card using linear algebra, and the video
card responds by painting geometry on the screen.

There’s so much to learn here that it’s hard to keep it all in your head.
You’re probably also wondering why these two branches of mathematics are
useful in a 2D physics game. Figure 2.1 gives a high-level block diagram
of the main results in this section, how they rely on each other, and where
we will use them later.

• 2.1.1 What’s Our Vector, Victor?

A vector is a list of scalars,2 typically written with square brackets around
them like this [0, 1]. The dimension of a vector is the number of numbers
in the list. For example, [0, 1] has two dimensions, and [0, 3, 42] has three
dimensions. We’re mostly interested in two-dimensional vectors in this
...........................

2Which for us means a floating-point number.

2.1 • Geometry and Linear Algebra 17

Figure 2.2 • The Linear Algebra World vector [3, 5] is drawn in Geometry World
by measuring 3 units across and 5 units up from an initial point (left) and drawing
an arrow from the initial point to the other one (center). The vector is the arrow
(right), not the other stuff.

book because that’s enough to describe 2D space. Remember how I said
that linear algebra is what goes on inside a computer? That’s reflected
in the fact that a vector corresponds very naturally to an array in most
programming languages. D3DX has a structure D3DXVECTOR2 that we will
use to implement 2D vectors in code. A D3DXVECTOR2 v has two floating-
point fields v.x and v.y.

That’s the Linear Algebra World version of a vector. The Geometry
World version of a vector is a picture of an arrow. To draw the vector [a, b],
you start at some arbitrary point on a flat plane; pick some arbitrary unit
such as nanometers, inches, furlongs, or parsecs; go a units to the right of
your point and b units up and make a second point; then draw an arrow
from your first point to your second one. For example, Figure 2.2 shows how
the Linear Algebra World vector [3, 5] is drawn in Geometry World. We’ll
adopt the habit of naming vectors with letters of the alphabet, putting an
arrow over them so that we remember they are vectors, for example, the
vector named �v.

Multiplication of a vector �v = [vx, vy] by a scalar s gives you a vector.
Simply multiply the components of the vector by the scalar:

s.�v = s.[vx, vy] = [s.vx, s.vy].

Scalar division is defined as scalar multiplication by the reciprocal of the
scalar.

�v/s = [vx, vy]/s = [vx/s, vy/s].

The addition or subtraction of two vectors gives you a vector. The Linear
Algebra World definition of vector addition says that you just add them

18 2 • Mathematics for Game Physics

Figure 2.3 • The Geometry World definition of vector addition and subtraction.

component by component. That is, if �u = [ux, uy] and �v = [vx, vy], then

�u+ �v = [ux + vx, uy + vy].

Vector subtraction is similar. Another way of looking at it is that you add
�u and −1.�v.

�u− �v = [ux − vx, uy − vy].

The Geometry World definition of vector addition is shown in Figure 2.3
(top). Place the tail of �v on the head of �u. Then, �u + �v is the vector that
goes from the tail of �u to the head of �v. The Geometry World definition of
vector subtraction is shown in Figure 2.3 (bottom). Place the tail of �v on
the tail of �u. Then, �u− �v is the vector that goes from the head of �v to the
head of �u.

D3DXVECTOR2s can be added using the overloaded addition operator +
and multiplied by a scalar using the overloaded multiplication operator *.
Here are some examples:

D3DXVECTOR2 u, v, w;

v = D3DXVECTOR2 (3.1415f, 7.0f);

u = 42.0f * v;

w = u + D3DXVECTOR2 (v.x, 99.0f);

u += w;

2.1 • Geometry and Linear Algebra 19

Figure 2.4 • A right triangle with sides of length a, o, and h, with θ the angle
opposite the side of length o.

• 2.1.2 Oh, Trig

Trigonometry is the mathematics that relates the sizes of the sides of a
triangle to the angles between them. For example, consider the right-
angled triangle in Figure 2.4, with sides of length o, a, and h as labeled,
and one of the (non-right) angles called θ. The side of length o is called
the opposite side, the one of length a is called the adjacent side relative
to θ, and the one labeled h is called the hypotenuse. Then, we define the
trigonometric functions sine, cosine, and tangent as follows:

sin θ = o/h,

cos θ = a/h,

tan θ = o/a.

The best way to remember this is to look at the letters underlined below.
They form the word “sohcahtoa”:

sin θ = o/h,

cos θ = a/h,

tan θ = o/a.

Sohcahtoa is such a weird word that you might be able to remember it
automatically. But if not, there are two handy mnemonics:

Some Old Horse Caught Another Horse Taking Oats Away.
Some Old Hippy Caught Another Hippy Toking On Acid.

The inverses of the trigonometric functions are called arcsine, arccosine,
and arctangent:

θ = arcsin
o

h
= arccos

a

h
= arctan

o

a
.

20 2 • Mathematics for Game Physics

Figure 2.5 • A geometric proof of the Theorem of Pythagoras.

The C++ programming language handily provides us with useful functions
sin, cos, tan, asin, acos, and atan. Of particular interest is the atan2

function that takes two parameters x and y and computes the arctangent
of y/x. We’ll find that one very useful in due course.

• 2.1.3 Theorem of Pythagoras

The Theorem of Pythagoras says that if you have a right-angled triangle
with sides of length a, b, and c, where c is the length of the hypotenuse,
then

a2 + b2 = c2.

Figure 2.5 contains a geometric proof of the Theorem of Pythagoras. The
two rectangles on the left have total area 2ab. The big square on the right
has area (a + b)2 since its sides have length a+ b. But looking inside you
will see that the white internal square has area c2 and the gray triangles
are the same as the gray triangles on the left and therefore have area 2ab.
Both of these methods of measuring the area of the square on the right
must give the same answer; therefore,

(a+ b)2 = c2 + 2ab

a2 + 2ab+ b2 = c2 + 2ab

a2 + b2 = c2.

Looking at it another way,

c =
√
a2 + b2.

2.1 • Geometry and Linear Algebra 21

Figure 2.6 • A geometric proof of the Pythagorean Identity.

This gives us a way to compute the length, often called the magnitude or
norm of a vector �v, written ‖�v‖. If �v = [vx, vy],

‖�v‖ =
√
v2x + v2y.

A vector is described as being normalized if it has length 1. A normal-
ized vector is usually written with a circumflex3 over it, like this: v̂. To
normalize a vector �v = [vx, vy], simply do a scalar division by its magnitude.

v̂ =
�v

‖�v‖ =
�v√

v2x + v2y

.

We can see now that multiplying a vector �v times a scalar s increases the
length of �v by a factor of s, that is, ‖s�v‖ = s‖�v‖, since

‖s�v‖ = ‖[svx, svy]‖ =
√
s2(v2x + v2y) = s

√
v2x + v2y = s‖�v‖.

Function D3DXVec2Length computes the length of a D3DXVECTOR2. The
square-root operation is sufficiently expensive that we should avoid it when
we can easily do so. Often, it is just as easy to work with the squares of
vector lengths as it is to work with lengths themselves.4 If so, then we can
use the faster D3DXVec2LengthSq function instead. D3DXVec2Normalize

normalizes a D3DXVECTOR2, that is, makes its length equal to 1.
Another thing we can derive from the Theorem of Pythagoras is the

so-called Pythagorean Identity:

sin2 θ + cos2 θ = 1,

which can be proved by applying the Theorem of Pythagoras to a right-
angled triangle with hypotenuse of length 1 (see Figure 2.6).
...........................

3A hat.
4We’ll see some examples later.

22 2 • Mathematics for Game Physics

Figure 2.7 • Triangle on which to illustrate the Law of Cosines.

The Theorem of Pythagoras only works for right-angled triangles, but
there is a useful generalization that works for any triangle, called the Law of
Cosines. I’m going to use the following notation in the rest of this section.
I’ll label points with letters of the alphabet, A, B, C, etc. The triangle
constructed by drawing line segments between points A, B, and C will be
called �ABC. The angle in �ABC at point B will be called ∠ABC, with
the B in the middle. The distance between points A and B will be called
‖AB‖. Now that we’ve gotten that out of the way, we can continue.

Suppose we have a triangle �ABC in which ‖AB‖ = c, ‖AC‖ = b,
‖BC‖ = a, ∠CAB = α, ∠ABC = β, ∠BCA = γ, as shown in Figure 2.7.
The Law of Cosines says that

a2 = b2 + c2 − 2bc cosα,

b2 = a2 + c2 − 2ac cosβ,

c2 = a2 + b2 − 2ab cosγ.

Let’s see if we can prove the first of the three parts of the Law of Cosines,
a2 = b2 + c2 − 2bc cosα. Let’s face it, the other two parts are exactly the
same if you just rename the points, sides, and angles. The whole problem
is that �ABC is not a right-angled triangle, but we can divide it into two
right-angled triangles5 by dropping a line segment from B perpendicular to
AC. Let D be the point where it hits AC. If you have trouble visualizing
this, see Figure 2.8. Since �ADB is a right-angled triangle, ‖BD‖ =
c sinα, ‖AD‖ = c cosα, and therefore, ‖AC‖ − ‖AD‖ = b − c cosα, as
shown. Furthermore, since �BDC is a right-angled triangle,

a2 = (c sinα)2 + (b− c cosα)2

= b2 + c2(sin2 α+ cos2 α)− 2bc cosα

= b2 + c2 − 2bc cosα.

...........................
5Two right-angled triangles are, by their very nature, twice as good as one.

2.1 • Geometry and Linear Algebra 23

Figure 2.8 • Proof of the Law of Cosines.

The first step uses the Theorem of Pythagoras, and the last step uses
the Pythagorean Identity, so we’re double-dipping on things Pythagorean
here.6

• 2.1.4 Orientation

Given two vectors �u and �v, the orientation from �u to �v is the angle in the
range −π to π that �u must be rotated counterclockwise7 to make it parallel
to and pointing in the same direction as �v. The orientation of a single
vector �v is defined to be the orientation from [1, 0] to �v. Trigonometric
functions (known as trig functions to their friends) are useful for figuring
out orientations. For example, if we rotate the vector �u = [1, 0] by angle
θ to get a new vector �v = [vx, vy], Figure 2.9 shows that cos θ = vx/1 and
sin θ = vy/1; therefore, vx = cos θ and vy = sin θ; that is, �v = [cos θ, sin θ].

Figure 2.9 • Given a vector �u = [1, 0], rotate it by angle θ to get vector �v =
[vx, vy]. Find vx and vy .

...........................
6But as they say, when you’ve got a hammer, everything looks like a nail.
7Also known as widdershins.

24 2 • Mathematics for Game Physics

Figure 2.10 • Find the orientation θ of �v = [vx, vy].

Conversely, to find the orientation θ of �v = [vx, vy], Figure 2.10 shows
that cos θ = vx/1, sin θ = vy/1, and tan θ = vy/vx; therefore, θ = arccos vx
= arcsinvy = arctan(vy/vx).

The best way to compute θ is by calling the two-argument function
atan2(u.y, u.x). The one-argument arctangent function atan is only
good in the first quadrant. For example, the horizontal angle to the vector
[1, 1], calculated by arctan(1/1), is 45◦, as expected. But the horizontal
angle to the vector [−1,−1] calculated by arctan(-1/-1) = arctan(1)

is 45◦ too, even though the correct answer should be −135◦ as shown
by Figure 2.11. The atan2 function takes into account the signs of both
parameters and gives the correct answer.

• IMPORTANT POINT •
Use sin and cos to rotate things, but use atan2 to find the angle they were rotated by.

Now, let’s try to rotate an arbitrary vector �u = [ux, uy] by some angle
β to get �v = [vx, vy], as shown in Figure 2.12. All we have to do is find �u’s

Figure 2.11 • The angle from the horizontal to [1, 1] in a counterclockwise di-
rection is 45◦, and the angle to [−1,−1] is −135◦.

2.1 • Geometry and Linear Algebra 25

Figure 2.12 • Rotating �u by angle β counterclockwise to get �v and rotating [1, 0]
by angle α+ β counterclockwise to get �v.

orientation α because �v is just [1, 0] rotated by angle α+β, and we already
know how to rotate [1, 0] by an arbitrary angle. Clearly,

�v = [vx, vy] = [cos(α+ β), sin(α+ β)].

Since we have the value of β and we know that α = arctan(uy/ux), we’re
good to go. The code for rotating vector u by angle beta to give vector v
should look something like this:

void Rotate(const D3DXVECTOR2 & u,

D3DXVECTOR2 & v, float beta){

float alpha = atan2(u.y, u.x);

v.x = cos(alpha + beta);

v.y = sin(alpha + beta);

} // Rotate

This uses an arctangent, a sine, and a cosine. The arctangent is actually
unnecessary. Fortunately for us, there are two useful trig identities:

cos(α+ β) = cosα cosβ − sinα sinβ

sin(α+ β) = sinα cosβ + cosα sinβ.

They’re not difficult to prove, but the proofs are a little more complicated
than you might expect. If you’re a math geek, you can read them in
Appendix A. Regardless, let’s take them for granted now and push on.
Since α = arctan(uy/ux), sinα = sin arctan(uy/ux) = uy and cosα =

26 2 • Mathematics for Game Physics

cos arctan(uy/ux) = ux. Therefore,

cos(α+ β) = cosα cosβ − sinα sinβ

= cos

(
arctan

uy

ux

)
cosβ − sin

(
arctan

uy

ux

)
sinβ

= ux cosβ − uy sinβ;

sin(α+ β) = sinα cosβ + cosα sinβ

= sin

(
arctan

uy

ux

)
cosβ + cos

(
arctan

uy

ux

)
sinβ

= uy cosβ + ux sinβ.

Notice that the need for arctangents has disappeared. The code for rotating
vector u by angle beta to give vector v becomes

void Rotate(const D3DXVECTOR2 & u,

D3DXVECTOR2 & v, float beta){

v.x = u.x * cos(beta) - u.y * sin(beta);

v.y = u.x * sin(beta) + u.y * cos(beta);

} // Rotate

We’ve replaced an arctangent with four floating-point multiplications, which
in practice is much faster. On the graphics card this is done in hardware
with a matrix multiplication:

[ux, uy]
[

cosβ sinβ
− sinβ cosβ

]
.

See Chapters 4–6 of [Dunn and Parberry 11] for more details.

• 2.2 Reflections on Reflection
A video game is kind of like a movie except that each animation frame
is computed on the fly before it is shown. Each object’s position �s is
recomputed by adding to it Δt�v, where Δt is the time since the last frame
and �v is its current velocity. When two objects collide, the collision most
likely happens between frames. For example, in Figure 2.13 (top) the ball
is not colliding with the wall in frame t = 1, but in frame t = 2 they have
interpenetrated. Even worse, an object that moves fast can appear to pass
right though another object without overlapping it. This is called tunneling.

2.2 • Reflections on Reflection 27

Figure 2.13 • The ball moving right along the dotted line overlaps the wall on
frame 2 (top). If it’s moving fast enough, it can tunnel completely through
the wall (middle). We need to interpolate the time of impact between frames
(bottom).

Figure 2.13 (middle) shows a ball tunneling through a wall between frames
t = 1 and t = 2. We need to interpolate between frames to find the time
of impact, abbreviated TOI, as shown in Figure 2.13 (bottom).

When objects collide, they rebound in a different direction. You hope-
fully remember the “angle of incidence equals angle of reflection” rule that
you learned in school. Putting that into code is harder than you might
think because the angle isn’t always obvious. I’ll explain it in three stages.
In Section 2.2.1, I’ll bounce balls off the walls; that is, I’ll reflect them in
lines that are parallel to the edge of the screen. Once we’ve mastered that,
I’ll move to balls bouncing off arbitrary lines in Section 2.2.2. We’ll need
to learn a new concept along the way, the vector operation dot product.
Finally, we’ll tackle balls bouncing off each other in Section 2.2.3.

28 2 • Mathematics for Game Physics

Figure 2.14 • POI for a ball hitting the ceiling.

• 2.2.1 Bouncing Off the Walls

Reflecting off the edge of the screen is relatively easy. All you need to do is
negate the appropriate component of your velocity vector and do a scalar
multiplication by a restitution coefficient between 0 and 1. The problem is,
unless you make a special effort, you’re not going to know that your object
has collided with the wall until just before or just after it collides. The
actual contact occurs between frames. Let’s see if we can find the point
of impact, abbreviated POI, for a ball with velocity vector �v = [vx, vy]
bouncing off the ceiling at height wy . We’ve been happily moving it by a
fixed distance in every frame, but we’ve found that since the last frame, it
has moved to a point [px, py] for which py > wy.

The angle θ that �v makes with the horizontal is arctan(vy/vx). Clearly
the y-coordinate of the POI is going to be wy. The x-coordinate of the POI
will be distance d to the left of the x-coordinate of the ball, where d = d1+d2
as shown in Figure 2.14. You can see on the left that tan θ = r/d1, so

d1 = r/ tan θ = rvx/vy,

and on the right, tan θ = (py − wy)/d2, so

d2 = (py − wy)/ tan θ = (py − wy)vx/vy.

Therefore,
d = d1 + d2 = (r + py − wy)vx/vy,

so the POI is
[px − (r + py − wy)vx/vy, wy].

2.2 • Reflections on Reflection 29

Figure 2.15 • Corrected position for a ball bouncing off the ceiling.

Finding the new position for the ball doesn’t require any trig functions.
Its x-coordinate doesn’t change because it’s bouncing off a horizontal line,
but its y-coordinate needs to change to what it would have been if the
ball had bounced off the ceiling at the POI. Examining Figure 2.15, we see
that the vertical distance from the current center of the ball at [px, py] is
py −wy + r, and it needs to go twice that distance down to get to where it
needs to be, that is, to y-coordinate py − 2(py −wy + r) = 2(wy − r)− py.
Its new position is, therefore,

[px, 2(wy − r) − py],

and its new velocity is cr[vx,−vy], where cr is the coefficient of restitution.

• 2.2.2 Bouncing Off a Line

Now, suppose we want to reflect a vector in a line placed at any old angle
in 2D space using the “angle of incidence equals angle of reflection” rule.
Before we get to reflections, though, we’re going to need the concept of
the dot product. The dot product of two vectors is a scalar. The Linear

30 2 • Mathematics for Game Physics

Figure 2.16 • The Geometry World definition of vector dot product.

Algebra World definition is that you multiply them together component by
component, then add the results. So, if �u = [ux, uy] and �v = [vx, vy], then

�u · �v = [ux, uy] · [vx, vy] = uxvx + uyvy.

The Geometry World definition of �u · �v is that it is the length of the per-
pendicular projection of �u onto �v times the length of �v, and equivalently,
the length of the perpendicular projection of �v onto �u times the length of
�u (see Figure 2.16). If the angle between �u and �v is θ, then

cos θ =
�u · �v
‖u‖‖v‖ ,

as you can see by looking at either side of Figure 2.16. This gives us a cool
way of computing θ:

θ = arccos
�u · �v
‖u‖‖v‖ .

We can implement this in code as follows. D3DXVec2Dot is the vector dot
product function in D3DX.

float Angle(

const D3DXVECTOR2 & u, const D3DXVECTOR2 & v)

{

return acos(D3DXVec2Dot (&u, &v)/

(D3DXVec2Length (u) * D3DXVec2Length (v)));

} // Angle

Now, we can get down to the business at hand: figuring out how to
reflect the vector �u in a line placed at any orientation. Suppose the line is
specified by giving its unit normal vector n̂, as shown in Figure 2.17. Let’s

2.2 • Reflections on Reflection 31

Figure 2.17 • Reflecting �u in a line specified by its normal n̂ to get �v.

call the resulting vector �v. The perpendicular projection of �u onto n̂ has
length

�u · n̂
‖n̂‖ = �u · n̂.

Looking at Figure 2.18 we see that the vector projection of �u onto n̂ is
(�u · n̂)n̂. Therefore, as shown in Figure 2.19,

�v = �u− 2(�u · n̂)n̂.

This equation has a short and very sweet implementation in code that uses
just five scalar multiplications and three scalar additions:

void Reflect (const D3DXVECTOR2 & u,

const D3DXVECTOR2 & n, D3DXVECTOR2 & v)

{

v = u - 2.0f * D3DXVec2Dot (&u, &n) * n;

} // Reflect

You will find a variant of this method buried in Section 10.6 of [Dunn
and Parberry 11], where it finds a use in the standard lighting model. My

Figure 2.18 • The vector projection of �u onto n̂ is (�u · n̂)n̂.

32 2 • Mathematics for Game Physics

Figure 2.19 • �v = �u− 2(�u · n̂)n̂.

coauthor Fletcher Dunn observes that it is a popular job interview question
for aspiring game programmers, so pay attention.

• 2.2.3 Bouncing Balls

Now for ball-to-ball collision response. Let’s start with the case in which
ball B1 is stationary and ball B2 is moving with velocity vector �v: they’ve
collided and we want to move B2 back to the point of impact. What follows
is adapted from Appendix A.13 of [Dunn and Parberry 11].

Let δ be the sum of the balls’ radii, so that the point of impact is when
their centers are distance δ apart. If B1 is at position �p1 and B2 is at
position �p2, let �c = �p1 − �p2 be the vector from the center of the B2 to the
center of B1. Let θ be the angle between −�v and �c. We want to find d, the
distance that B2 has to travel in direction −�v to the point of impact. All
of this is shown in Figure 2.20. By the Law of Cosines,

δ2 = d2 + ‖�c ‖2 − 2d‖�c ‖ cos θ.

By the geometric interpretation of dot product,

‖�c ‖ cos θ = −v̂ · �c,

where v̂ is the normalized version of �v. Putting these two things together
with the fact that ‖�c ‖2 = �c · �c,

δ2 = d2 + �c · �c+ 2dv̂ · �c.

Rearranging this, we get a quadratic equation in d:

d2 + 2dv̂ · �c+ �c · �c− δ2 = 0.

2.2 • Reflections on Reflection 33

Figure 2.20 • Ball to ball collision. Solve for d.

Solving for d as one of the roots of this quadratic equation,

d =
−2v̂ · �c±√

4(v̂ · �c)2 − 4(�c · �c− δ2)

2

= −v̂ · �c±
√
(v̂ · �c)2 − �c · �c+ δ2.

The two roots correspond to the distance at which the collision starts and
the distance at which the collision ends. We want the former one, corre-
sponding to the smaller root (v̂ · �c is a negative number so that −v̂ · �c is
positive):

d = −v̂ · �c+
√
(v̂ · �c)2 − �c · �c+ δ2.

We’d better be careful of the number inside that square root. It might be
negative, which can only happen if Figure 2.20 is actually wrong and the
balls miss.

What do we do if both balls are moving? Actually, we’ve done all the
hard work already. We can view things from the perspective of a bug sitting
on B1. From his frame of reference, B1 is stationary and B2 is moving at
velocity �v2 − �v1 (see Figure 2.21). So, set �v = �v2 − �v1 in the above, and
you are good to go,8 except that the above procedure will give you only d2,
the distance moved back by B2. B1 will need to move back d1, the same
distance scaled by their relative velocity, d1 = d2‖v1‖/‖v2‖.
...........................

8This only works for nonaccelerating frames of reference.

34 2 • Mathematics for Game Physics

Figure 2.21 • If both balls are moving (left), we can reduce it to the case of one
ball moving by using vector subtraction (right).

Now that we can move the balls back to their point of impact, we have to
make them bounce. The approach taken is similar to that of bouncing a ball
off the tangent between them using the techniques of Section 2.2.2, except
that in a perfectly elastic collision, the balls will share the components of
velocity along a line between their centers.

Suppose ball B1 has velocity vector �u. If �u′ and �v′ are the respective
velocity vectors of the balls after collision, one would be tempted to apply
Figure 2.19 to both balls independently, giving

�u′ = �u− 2(�u · n̂)n̂,
�v′ = �v − 2(�v · n̂)n̂.

The vectors (�u · n̂)n̂ and (�v · n̂)n̂ are the components of �u and �v orthogonal
to the tangent, respectively. The sum of the absolute value of the magni-
tudes of these gets shared evenly between the two balls in the appropriate
directions. That is, each ball gets magnitude:

2(�u · n̂)− 2(�v · n̂)
2

= �u · n̂− �v · n̂ = (�u− �v) · n̂.

Therefore, the proper way to calculate �u′ and �v′ is

�u′ = �u− ((�u − �v) · n̂)n̂,
�v′ = �v + ((�u − �v) · n̂)n̂.

The following function to update u and v, given the tangent normal vector
n, assumes that n has already been normalized:

void Reflect (D3DXVECTOR2 & u,

D3DXVECTOR2 & v, const D3DXVECTOR2 & n)

2.2 • Reflections on Reflection 35

{

D3DXVECTOR2 dv = u - v;

float m = D3DXVec2Dot (&dv , &n);

u -= m * n;

v += m * n;

} // Reflect

Putting everything in this section together, once we discover that two
balls have collided (that is, their centers are closer than the sum of their
radii), here’s what we have to do:

1. Move the balls back to the point of impact.

2. Reflect their velocity vectors in the tangent between them at the point
of impact, sharing the perpendicular components equally.

3. Move the balls forward in that direction a distance equal to that
moved back in Step 1.

We start by declaring some useful local variables and initializing those that
can be initialized.

BOOL BallBounce (

D3DXVECTOR2 & p1 , D3DXVECTOR2 & v1 , float r1 ,

D3DXVECTOR2 & p2 , D3DXVECTOR2 & v2 , float r2)

{

D3DXVECTOR2 rv , vhat , c, n, v1hat , v2hat;

float cdotvhat , r, s, d, m, rs;

D3DXVec2Normalize (&v1hat , &v1);

D3DXVec2Normalize (&v2hat , &v2);

rs = D3DXVec2Length (&v1)/ D3DXVec2Length (&v2);

rv = v1 - v2;

D3DXVec2Normalize (&vhat , &rv);

c = p2 - p1;

cdotvhat = D3DXVec2Dot (&c, &vhat);

D3DXVec2Normalize (&n, &c);

m = D3DXVec2Dot (&rv , &n);

r = r1 + r2;

Step 1. We move p1 and p2 back to the point of impact. We could do this
after Step 2, but it’s better to bail out as early as possible if there’s really
no collision.

36 2 • Mathematics for Game Physics

s = cdotvhat *cdotvhat - D3DXVec2LengthSq (&c) + r*r;

if(s >= 0.0f)

d = -cdotvhat + sqrt(s);

else return FALSE;

p1 -= d * v1hat;

p2 -= d * (v2hat + v1hat);

Step 2. Now we compute the change in velocities.

v1 -= m * n;

v2 += m * n;

Step 3. We need to recompute v1hat and v2hat because v1 and v2 just
changed in Step 2. Then we can move p1 and p2 to where they should be.

D3DXVec2Normalize (&v1hat , &v1);

D3DXVec2Normalize (&v2hat , &v2);

p1 += d * v1hat;

p2 += d * v2hat;

return TRUE

} // BallBounce

• 2.3 Digital Calculus
Remember your high school physics class? I suppose they talked about
things like a particle starting at position s = 0 at time t = 0 moving at
velocity u under constant acceleration a. Hopefully, you remember from
class that the particle’s position s and velocity v at time t are given by the
equations

s = ut+ at2/2, (2.1)

v = u+ at. (2.2)

Perhaps you were taught that these equations work with vectors too. The
vector version talks about a particle starting at position �s = [0, 0] at time
t = 0 moving at velocity �u under constant acceleration �a. Its position �s
and velocity �v at time t are given by

�s = �ut+ �at2/2,

�v = �u+ �at.

2.3 • Digital Calculus 37

Figure 2.22 • The path followed by a cannonball launched at an orientation of
about 75◦.

The vector version is not so much of a big deal when you stop to think
about it. For example, in two dimensions, just do the high-school thing in
each dimension and slam the results into a 2D vector. Simple.

You may also have learned in your calculus class that Equation (2.2) is
the derivative or differential of Equation (2.1), and that Equation (2.1) is
the integral of Equation (2.2). This is an application of the Fundamental
Theorem of Calculus, which states that differentiation and integration are
the same but backwards.

All of this may be but a vague and hazy memory that for the sake of
your mental health you are actively trying to suppress, but perhaps that’s
just as well. The physics you learned in high school was continuous physics.
You are about to learn discrete physics, which is a very different animal.
It looks similar, and mathematicians would agree that discrete physics
converges to continuous physics in the limit, but there is no pressing need
for us to obsess about reality.9 All we want to do is make a game where
the physics looks right, and we know that when we see it, right?

For example, suppose we threw a ball into the air at about 75◦ to the
horizontal. If we had a high-speed camera and took a bunch of images of
the ball flying through the air and superimposed them, we’d expect to see
something like Figure 2.22. The horizontal speed of the ball appears to be
constant, its vertical speed seems to slow as it gets higher, and its path
looks like a parabola. Figure 2.22 actually shows the discrete simulation
of a ball. Is it right? Who cares! We don’t know how hard the ball was
...........................

9Indeed, there are indications that both time and space are discrete at the quantum
level, so continuous physics is probably the approximation and discrete physics the
reality.

38 2 • Mathematics for Game Physics

thrown, what the wind speed and direction were, or even what the units of
measurement are. It looks “good enough.”

So if it looks right, it is right. This is often called “the first law of
computer graphics.” But what does that really mean? That’s what the
remainder of this chapter is about.

• 2.3.1 Euler Integration

In the Real World, we tend to think of things such as velocity and position
as being continuous. So, for example, if we take a body under constant
acceleration and graph its velocity as a function of time, we get a continuous
graph like Figure 2.23. But in a discrete universe, such as the one inside
our computer, we divide time into discrete units or frames. During each
frame we compute the new position, velocity, and acceleration of the body
and compose a frame of animation to display on the screen.

Let’s take a closer look at what’s going on here. Suppose we know an
object’s position, velocity, and acceleration in frame i (see Figure 2.24).
Let’s call them si, vi, and ai, respectively. Let Δt be the duration of the
previous animation frame. Then Δt is our best guess for the duration of
the current frame (which isn’t over yet). We can compute si+1 and vi+1 as
follows:

si+1 = si + viΔt,

vi+1 = vi + aiΔt.

Figure 2.23 • Velocity versus time in a continuous universe.

2.3 • Digital Calculus 39

Figure 2.24 • Timeline for a moving object.

This corresponds to the classic Euler integration, named after the German
mathematician Leonhard Euler10 (1701–1783) that you probably learned
in calculus class in school. Instead of integrating the curve, we sum over
discrete time slices (see Figure 2.25).

Objects will need to store their position, velocity, acceleration, and time
since the last move like so:

D3DXVECTOR2 m_vPos;

D3DXVECTOR2 m_vVelocity ;

D3DXVECTOR2 m_vAcceleration ;

int m_nLastMoveTime ;

Code for a move function that updates an object’s position, velocity, and
time since the last move should look something like this:

void move (){

const float SCALE = 20.0f;

const float SCALE2 = 42.0f;

int time=g_cTimer .time ();

int dt = time - m_nLastMoveTime ;

m_vPos += m_vVelocity *(float)dt/SCALE;

m_vVelocity += m_vAcceleration *(float)dt/SCALE2;

m_nLastMoveTime = time;

} // move

...........................
10Euler is pronounced “oiler,” not “yooler.” If you want to see a mathematician cringe,

pronounce it “yooler.”

40 2 • Mathematics for Game Physics

Figure 2.25 • Velocity versus time in a discrete universe.

Suppose that an object starts at rest and accelerates at 10 m/s for 14 s.
Where does it end up after 14 s? To get the answer, we use Equation (2.1):

s = ut+ at2/2

= 0 + 5× 142 m

= 980 m.

Inside the computer, we compute the distance moved in each frame and
accumulate all those distances to get the total distance. We have to assume
that the velocity is constant within each frame. We end up with the set
of distances in Table 2.1, which is too small. The final distance traveled is
910 m instead of 980.

Of course, we can always change the code so that the velocity is updated
first:

m_vVelocity += m_vAcceleration *(float)dt/SCALE2;

m_vPos += m_vVelocity *(float)dt/SCALE;

However, Table 2.2 shows that this makes the final distance too large,
1050 m instead of 980. Clearly, we’re never going to be able to get it
exactly right. The gray area in Figure 2.23 is always going to be slightly
different from that in Figure 2.25. The point is that it doesn’t really matter.

2.3 • Digital Calculus 41

t a v s Δs
∑

Δs

0 10 0 0 0 0
1 10 10 5 0 0
2 10 20 20 10 10
3 10 30 45 20 30
4 10 40 80 30 60
5 10 50 125 40 100
6 10 60 180 50 150
7 10 70 245 60 210
8 10 80 320 70 280
9 10 90 405 80 360

10 10 100 500 90 450
11 10 110 605 100 550
12 10 120 720 110 660
13 10 130 845 120 780
14 10 140 980 130 910

Table 2.1 • Distances using Euler integration, updating position before velocity.
Column 1 is the frame number, Column 2 is acceleration, which remains constant,
Column 3 is velocity, Column 4 is expected distance traveled, Column 5 is the
distance traveled in the current frame, and Column 6 is the sum of Column 5 up
to the current frame.

t a v s Δs
∑

Δs

0 10 0 0 0 0
1 10 10 5 10 10
2 10 20 20 20 30
3 10 30 45 30 60
4 10 40 80 40 100
5 10 50 125 50 150
6 10 60 180 60 210
7 10 70 245 70 280
8 10 80 320 80 360
9 10 90 405 90 450

10 10 100 500 100 550
11 10 110 605 110 660
12 10 120 720 120 780
13 10 130 845 130 910
14 10 140 980 140 1050

Table 2.2 • Distances using Euler integration, updating position before velocity.
Column 1 is the frame number, Column 2 is acceleration, which remains constant,
Column 3 is velocity, Column 4 is expected distance traveled, Column 5 is the
distance traveled in the current frame, and Column 6 is the sum of Column 5 up
to the current frame.

42 2 • Mathematics for Game Physics

• 2.3.2 Verlet Integration

Loup Verlet (1951–) developed the concept that is now called Verlet integra-
tion for use in particle physics simulation. There are mathematical reasons
for using Verlet integration instead of Euler integration when simulating
real particle systems. But what about in games? Game programmers don’t
care as much about reality. One useful feature of Verlet integration is that
it is easy to incorporate constraints, for example, to fix lengths and an-
gles. This means that Verlet integration makes it easier to code soft body
animation including cloth and ragdoll physics.

Verlet’s thinking goes like this. Suppose we know ai, si, and si−1 and
want to compute si+1. Let Δsi = si − si−1 be the distance moved in the
previous animation frame. Let’s try to compute Δsi+1, the distance to be
moved in the current frame. We know that

Δsi+1 = viΔt+ aiΔt2/2.

Now, Δsi is a good approximation for viΔt. Therefore, substituting for
viΔt in the above equation,

Δsi+1 = Δsi + aiΔt2/2.

Since si+1 = si +Δsi+1, substituting for Δsi+1,

si+1 = si +Δsi + aiΔt2/2.

Substituting for Δsi, we get

si+1 = si + (si − si−1) + aiΔt2/2

= 2si − si−1 + ai · δt2/2.
This last equation is the key to Verlet integration. It shows how to compute
si+1 from si, si−1, ai, and Δt. There is no need to store velocity at all. We
can even fake a type of friction by using the following equation instead:

si+1 = 1.99si − 0.99si−1 + ai ·Δt2/2.

We implement this by storing each object’s position, last position, acceler-
ation, and last move time.11

D3DXVECTOR2 m_vPos;

D3DXVECTOR2 m_vOldPos ;

D3DXVECTOR2 m_vAccel ;

int m_nLastMoveTime ;

...........................
11That’s right, we don’t store velocity.

2.3 • Digital Calculus 43

Figure 2.26 • Discrete motion
with Euler integration.

Figure 2.27 • Discrete motion with Verlet
integration.

We then update position once per frame:

int time = g_cTimer .time ();

int dt = time - m_nLastMoveTime ;

D3DXVECTOR2 vTemp = m_vPos; // this will be old

m_vPos += m_vPos - m_vOldPos

+ m_vAccel *dt*dt /2.0f; // update

m_vOldPos = vTemp; // what was current is now old

m_nLastMoveTime = time; // update time

Figures 2.26 and 2.27 summarize the difference between Euler and Verlet
integration for computing the motion of a body under acceleration. Our
code can be optimized slightly by assuming that dt is constant. In fact,
we can make it equal to 1. There’s no need to store time:

D3DXVECTOR2 m_vPos;

D3DXVECTOR2 m_vOldPos ;

D3DXVECTOR2 m_vAccel ;

The code becomes simpler too.

D3DXVECTOR2 vTemp = m_vPos; // this will be old

m_vPos +=

m_vPos - m_vOldPos + m_vAccel /2.0f;

m_vOldPos = vTemp; // what was current is now old

Even better, we can ignore the division by 2 and ramp the acceleration
down to compensate if the resulting motion looks too fast.

D3DXVECTOR2 vTemp = m_vPos; // this will be old

m_vPos += m_vPos - m_vOldPos + m_vAccel ;

m_vOldPos = vTemp; // what was current is now old

44 2 • Mathematics for Game Physics

The astute reader will be asking themselves how we can assume dt == 1

when in fact it is highly unlikely to be the case. However, we can repeat
this code many times per frame. For example,

const int ITERATIONS = 7; // Why 7? Why not.

D3DXVECTOR2 vTemp;

for(int i=0; i<ITERATIONS ; i++){

vTemp = m_vPos;

m_vPos += m_vPos - m_vOldPos + m_vAccel ;

m_vOldPos = vTemp;

} //for

In practice we should do as many ITERATIONS as we can fit into a frame,
that is, ITERATIONS == dt.12

int time = g_cTimer .time ();

int dt = time - m_nLastMoveTime ;

D3DXVECTOR2 vTemp;

for(int i=0; i<dt; i++){

vTemp = m_vPos;

m_vPos += m_vPos - m_vOldPos + m_vAccel ;

m_vOldPos = vTemp;

} //for

m_nLastMoveTime = time;

How do we do collision response with Verlet integration? Let’s take
the example of bouncing off the right-hand wall. Once we’ve detected a
collision, here’s what we do. To simplify things a little, lets suppose the
ball is touching the right-hand wall, either because we’re lucky or we’ve
detected a penetration and backed off the ball’s current position m_vPos

and old position m_vOldPos to keep it that way. The situation looks like
Figure 2.28 (left). The ball is coming in from the bottom left corner along
the dotted line and will reflect to the top left corner along the other dotted
line with the angle of incidence equal to the angle of reflection. It’s just a
matter of moving m_vOldPos to the right to make it that way. That is, if
dx is the difference in the x-coordinates of the current and old positions,
then we want to move m_vOldPos to the right by 2 times dx as shown in
Figure 2.28 (right).

float dx = m_vPos.x - m_vOldPos .x;

m_vOldPos .x += 2.0f * dx;

...........................
12Usually, dt is in the range of tens of milliseconds.

2.3 • Digital Calculus 45

Figure 2.28 • The Verlet bounce. Bouncing off the right-hand wall using Verlet
integration.

That can be simplified slightly to

m_vOldPos .x = 2.0f * m_vPos.x - m_vOldPos .x;

But where does the coefficient of restitution fit in? How can we move
m_vOldPos to scale back the speed of the reflected ball? As we can see in
Figure 2.29, it needs to move in the direction of m_vPos. Here’s how to do it
with a coefficient of restitution r. To compute the new value of m_vOldPos,
we compute the vector vDelta from m_vOldPos to m_vPos, negate its y-
component, scale it by r, and add it to m_vPos (see Figure 2.30):

const float r = 0.8f; // for example

D3DXVECTOR2 vDelta = m_vPos - m_vOldPos ;

vDelta.y = -vDelta.y;

m_vOldPos = m_vPos + r * vDelta

Replacing the vector operations with component-wise operations makes the
code slightly less readable and slightly more efficient:13

m_vOldPos .x = m_vPos.x + r*(m_vPos.x - m_vOldPos .x);

m_vOldPos .y += r*(m_vOldPos .y - m_vPos.y);

...........................
13But one can argue that any optimizing compiler worth its salt ought to be able to

perform the optimization for you.

46 2 • Mathematics for Game Physics

Figure 2.29 • Trying to fit a coefficient of restitution into Figure 2.28.

Figure 2.30 • The Verlet bounce using vectors.

• 2.4 Relaxation
I mentioned earlier that Verlet integration makes it easy to enforce con-
straints on the particles. It’s about time I backed up that claim. For
example, let’s model a stick by applying Verlet integration to two particles
at the ends of the stick. (See Figure 2.31.) The constraint is that the dis-
tance between the particles must remain constant. We move the particles
at the ends of the stick independently, then try to correct their positions
before rendering if they are the wrong distance apart. Suppose its ends are
at positions m_vP1 and m_vP2, and it is supposed to have length LEN.

const float LEN = 42.0f

D3DXVECTOR2 m_vP1 , m_vP2;

First we get a vector vStick along the stick and find its length fLen.

2.4 • Relaxation 47

Figure 2.31 • Modeling a stick as two particles.

D3DXVECTOR2 vStick = m_vP1 - m_vP2;

float fLen = D3DXVec2Length (& vStick);

Then we find the difference between the stick now and what it should be.

vStick *= 1.0f - LEN/fLen;

We split the difference between the two ends.

m_vP1 += 0.5f * vStick;

m_vP2 -= 0.5f * vStick;

Putting it all together and simplifying the code a little, we get the following
useful function.14

void StickRelax (VECTOR& p1 , VECTOR& p2){

D3DXVECTOR2 vStick = p1 - p2;

vStick *= 1.0f - LEN/D3DXVec2Length (& vStick);

p1 += 0.5f * vStick;

p2 -= 0.5f * vStick;

}; // StickRelax

So far, so good. But what if we’ve got two sticks joined together at one
end? We can model them using three particles as shown in Figure 2.32. But
in satisfying the length constraint on one stick, we may move the shared
m_vP2, violating the length constraint on the other stick (see Figure 2.33).
Here’s what we do.

Given these declarations,

const float LEN = 42.0f

VECTOR m_vP1 , m_vP2 , m_vP3;

...........................
14It’s “useful” in the sense that we’ll use it again in a moment.

48 2 • Mathematics for Game Physics

Figure 2.32 • Modeling a pair of sticks using three particles.

Figure 2.33 • The shared point m_vP2 cannot move in both directions simulta-
neously.

we treat the sticks independently:

StickRelax (m_vP1 , m_vP2);

StickRelax (m_vP2 , m_vP3);

Notice that this code is not exactly as we drew it in Figure 2.33. When
we move m_vP2 the second time, it’s not starting from its original position
(see Figure 2.34), but it’s making progress towards where it needs to be.
All we need to do is to repeat the process, which is called relaxation.

const int ITERATIONS = 7; // Why 7? Why not

for(int i=0; i<ITERATIONS ; i++){

StickRelax (m_vP1 , m_vP2);

StickRelax (m_vP2 , m_vP3);

} //for

This is what is known as Jacobi or Gauss-Seidel relaxation.15 It is
a general method for satisfying multiple constraints that works quite well,
which means that if the conditions are right, it will converge. The number of
ITERATIONS will depend on the physical system being modeled and details
such as the speeds and the floating-point precision. If ITERATIONS is small,
the stick acts like a spring. As ITERATIONS gets larger, the spring becomes
more stick-like.
...........................

15I’ll probably get flamed by at least one mathematician for glossing over the subtle
differences between Jacobi and Gauss-Seidel relaxation. Gandalf would probably have
said this about mathematicians: “Meddle not in the affairs of mathematicians, for they
are subtle and quick to anger.”

2.5 • Exercises 49

m_vP2 m_vP2 m_vP2

Figure 2.34 • Instead of taking the two forces at m_vP2 together (left), treat
them consecutively (center and right).

• 2.5 Exercises
1. Prove that the angles of a triangle add up to 180◦.
2. You are in a gun emplacement at world space coordinates [365, 99],

and your gun turret is at angle 42◦ widdershins16 from the horizontal.
What angle must you rotate it in order to point to an adversary at
[836, 999]?

3. Prove the two parts of the Law of Cosines that we didn’t prove in
Section 2.1.3:

b2 = a2 + c2 − 2ac cosβ,

c2 = a2 + b2 − 2ab cosγ.

4. Prove that sin(α + β) = sinα cosβ + cosα sinβ. (Hint: See Ap-
pendix A.)

5. Suppose you are animating a ball of radius 75 that starts out below
the top of the screen rolling at angle θ counterclockwise from the
horizontal. You want it to bounce off the top of the screen, which
has y-coordinate 768. Suppose that it ends up at point �p0 after the
first animation frame. For each of the values of θ and �p0 below, find
the coordinates of the POI and the corrected position �p1 of the ball
after bouncing off the top of the screen. Show all of your work.

(a) θ = 1.855, �p0 = [141, 881]. I’m going to help you get started by
giving you the answer this time. Please verify for me17 that the
POI is [141, 881] and �p1 = [141, 505].

(b) θ = 1.064, �p0 = [632, 914].

(c) θ = 0.896, �p0 = [698, 816].

(d) θ = 0.756, �p0 = [762, 756].

(e) θ = 0.695, �p0 = [892, 814].

...........................
16Well? What do you think the index at the back of the book is for?
17I’ve been known to make mitsakes.

50 2 • Mathematics for Game Physics

6. Suppose you are animating a scene in which a green ball of radius 128
has been firmly bolted to the floor at position [680, 450], and a blue
ball of radius 75 is rolling towards it. In frame 0, the blue ball is at
[280, 250]. In frame 1, our animation has unfortunately allowed the
balls to overlap, and the blue ball is at the position �g0 given below.
Find the distance d that the blue ball must be moved back along its
path to the TOI and its corrected position �g1 after bouncing off the
green ball. Show all of your work.

(a) �g0 = [564, 599]. I’m going to help you get started by giving you
the answer this time. Please verify for me that d = 148.03 and
�g1 = [415, 611].

(b) �g0 = [576, 589]. I’ll do it a second time, but then I’m going to
cut you loose. Verify for me that d = 127.22 and �g1 = [461, 626].

(c) �g0 = [618, 547]. (You are on your own now. Go for it.)

(d) �g0 = [640, 520].

(e) �g0 = [714, 367].

(f) �g0 = [725, 315].

3
A Rigid Body Physics Game

Let’s apply the math and physics from Chapter 2 to make a rigid body
dynamics game, one in which things are rigid in the sense that they can’t
be deformed by the forces that act on them. I’ll show you the source code
in detail, describing what it does and how it does it. Just as importantly,
I’ll describe the design decisions that made it look the way it does. You
can download the source code from the website for this book [Parberry 12]
and experiment with it yourself. My favorite rigid body dynamics game in
real life is eight-ball pool, but let’s simplify things a little bit and restrict it
to the end game, in which you have to sink the eight ball without sinking
the cue ball.

This chapter is divided into six sections. Section 3.1 contains an overview
of the Eight-Ball Pool End Game, including how to play it, what physics we
will need, and the code structure. Section 3.2 begins our journey through
the code file-by-file. Section 3.3 is on Render World, and Section 3.4 is on
Object World (see Section 1.4.1). Section 3.5 is on the objects in the game,
which are obviously pool balls. We end in Section 3.6 with some exercises
for the reader.

• 3.1 The Eight-Ball Pool End Game
This section describes our Eight-Ball Pool End Game in more detail than
you probably want (to be on the safe side). It is divided into two parts.
Section 3.1.1 describes how to play, which is pretty obvious: Just mash the
space bar and the arrow keys until you get the hang of it. Section 3.1.2
talks about how the code is organized.

51

52 3 • A Rigid Body Physics Game

Figure 3.1 • Winning and losing the Eight-Ball Pool End Game.

Figure 3.2 • The Eight-Ball Pool End Game in play.

• 3.1.1 How to Play

In the Eight-Ball Pool End Game, you have only a cue ball and an eight ball
on the table, as shown in Figure 3.2. Your aim is to sink the eight-ball into
a pocket before the cue ball. If you sink the cue ball, you lose (Figure 3.1,
left). Otherwise, if you sink the eight ball, you win1 (Figure 3.1, right). At
the start, the cue ball is on the baseline, and you can move it along that
...........................

1In real life you also lose if you completely miss the eight ball, but we’ll ignore that
rule.

3.1 • The Eight-Ball Pool End Game 53

Files Class Description

GameObject.cpp, h CGameObject Base object class
BallObject.cpp, h CBallObject Derived ball object class
ObjectManager.cpp, h CObjectManager Base object manager class
BallManager.cpp, h CBallManager Derived ball manager class
ObjectWorld.cpp, h CObjectWorld Object world
RenderWorld.cpp, h CRenderWorld Render world

MyGame.cpp – Game main
SndList.h – Sound list
GameDefines.h – Game defines

Table 3.1 • Files and classes in project My Game.

line with the up and down arrow keys. An arrow on the screen shows the
direction that the cue ball will travel. To fire it, hit the space bar. You can
change the direction vector with the left and right arrow keys before you
fire. Once the balls come to rest after each shot (assuming both balls are
still on the table), you will see the arrow for your next shot (see Figure 3.2).
When the game is over, the space bar will reset the game back to the initial
conditions.

• 3.1.2 Code Structure

The code is organized into a Visual Studio 10 solution that has three
projects called Engine, Tools, and My Game. Engine and Tools contain
code that is outside the scope of this book, including details of the care and
feeding of DirectX and Windows programming. Tools also contains code
from TinyXML, an Open Source XML reader. We will use it to read settings
from an XML file named GameSettings.xml. I want you to ignore those
details, so I haven’t given you the source code. Engine in particular con-
tains classes CRenderer, C3DSprite, CSpriteManager, and CTextManager,
whose tasks you can guess from their names.

Project My Game consists of seven code files and eight header files con-
taining declarations and definitions for the six classes shown in Table 3.1.

1. The Render World class CRenderWorld implements the Render World
shown in Figure 3.3, top right.

2. The Object World class CObjectWorld implements the Object World
shown in Figure 3.3, top left. The Object World class also makes use
of the following classes.

3. The Game Object class CGameObject is a generic object in the Object
World responsible primarily for knowing where it is and where it is
going.

54 3 • A Rigid Body Physics Game

Figure 3.3 • The organization of our code using the two Game Engine Worlds
of Figure 1.1.

4. The Ball Object class CBallObject is derived from CGameObject. It
adds ball-specific things and is also in the Object World.

5. The Object Manager class CObjectManager is responsible for man-
aging a collection of objects and the interactions between them. It is
also in the Object World.

6. The Ball Manager class CBallManager is derived from CObjectMan

ager and adds ball-specific things. It is also in the Object World.

The main control structure in our game code is the ProcessFrame loop.
Each iteration of the ProcessFrame loop consists of asking the Object
World to move all of the objects and then to draw them. The Object
World is obviously responsible for the former since only it knows about
their locations and velocities, but it will clearly need to ask the Render
World for help with the latter.

First, let’s see what happens when ProcessFrame asks the ObjectWorld
to move all of the balls. The process is illustrated in Figure 3.4. The Object
World’s move function calls the Ball Manager’s move function. The Ball
Manager’s move function calls the Object Manager’s move function, then
does ball-to-ball collision detection and response. The Object Manager’s
move function loops through all of the objects in its Object List and asks
them to move themselves by calling the Ball Object move function. This
in turn calls the Game Object move function and performs ball-to-rail and
ball-to-pocket collision detection and response.

Next, ProcessFrame asks the Object World to draw the game ob-
jects. It assumes that the objects themselves are healthy and mentally
well-adjusted in the sense that they know where they are and where they
are going in Object World. The process is again illustrated in Figure 3.4.
The Object World’s draw function calls the Ball Manager’s draw function,
which inherits the Object Manager’s draw function, which loops through
its Object List and asks the Render World to draw each object listed there.

3.2 • Code Run-Through 55

Figure 3.4 • Flow of control for the ProcessFrame loop.

• 3.2 Code Run-Through
Project My Game has an XML file and, as we mentioned above, seven source
files and eight header files. Let’s hit the high points.

• 3.2.1 File GameSettings.xml

<settings >

<game name ="Pool End Game" />

<renderer width ="1024" height ="531" />

<!-- image file names -->

<images >

<image src=" Images \\ pooltable1024x531 .png" />

</images >

<!-- sprites -->

<sprites >

<sprite name =" vector" file =" Images \\ vector.png"/>

<sprite name =" cueball " file =" Images \\ cueball.png"/>

<sprite name =" eightball " file ="Images \\8ball.png"/>

</sprites >

<!-- sound -->

<sound cps="1" bps ="8" rate ="22050"/>

56 3 • A Rigid Body Physics Game

<sounds level ="0">

<sound file =" Sounds \\ cue.wav" copies ="1"/>

<sound file =" Sounds \\ ballclick .wav" copies ="4"/>

<sound file =" Sounds \\ thump.wav" copies ="4"/>

<sound file =" Sounds \\ pocket.wav" copies ="2"/>

</sounds >

</settings >

• 3.2.2 File GameDefines.h

File GameDefines.h contains a couple of enumerated types. Enumerated
types are a powerful way to assign names to important numbers, and they
let you assign a meaningful type name to them when they are used in
declarations. If you’re unfamiliar with them, get familiar fast.

GameObjectType describes the three kinds of game object; the arrow for
drawing the impulse vector to be applied to the cue ball (see Figure 3.2),
the cue-ball object, and the eight-ball object.

enum GameObjectType {

ARROW_OBJECT , CUEBALL_OBJECT , EIGHTBALL_OBJECT

};

GameStateType describes the possible game states; the first is the initial
game state when the balls are in their initial positions, the second is when
the balls are actually in motion, the third is when setting up the next shot
as shown in Figure 3.2, the fourth and fifth are when the player has won
and lost, respectively.

enum GameStateType {

INITIAL_GAMESTATE , BALLSMOVING_GAMESTATE ,

SETTINGUPSHOT_GAMESTATE , WON_GAMESTATE ,

LOST_GAMESTATE

};

• 3.2.3 File MyGame.cpp

Think of the file MyGame.cpp as being the main for your game. It starts with
declarations of some global variables. The character array g_szGameName

is a place to store the game’s name. This will automatically be read from
GameSettings.xml and displayed in the window’s title bar as shown at the

3.2 • Code Run-Through 57

top left of Figure 3.2. Global variable g_nGameStatewill record the current
game state (refer back to Section 3.2.2 for the definition of GameStateType).

char g_szGameName [256];

GameStateType g_nGameState = INITIAL_GAMESTATE ;

Next, we declare some useful singleton class instances. The timer g_cTimer
takes care of measuring time for you. The Sound Manager g_pSoundManager
manages the game sounds for you automatically, taking input from Game

Settings.xml. Finally, we’ll declare the Render World g_cRenderWorld

and the Object World g_cObjectWorld.

CTimer g_cTimer ;

CSoundManager * g_pSoundManager ;

CRenderWorld g_cRenderWorld ;

CObjectWorld g_cObjectWorld ;

That ends the list of global variables. The first function is CreateObjects,
which creates the cue-ball and eight-ball objects. It asks the Ball Manager
to create them at certain places and squirrels away pointers to them in
global variables g_pCueBallObject and g_p8BallObject for later use.

void CreateObjects (){

D3DXVECTOR2 v;

// create eight ball

v.x = 750.0f; v.y = (float)g_nScreenHeight /2.0f;

g_cObjectWorld .create(EIGHTBALL_OBJECT , v);

// create cue ball

v.x = 295.0f; v.y = (float)g_nScreenHeight /2.0f;

g_cObjectWorld .create(CUEBALL_OBJECT , v);

g_cObjectWorld . ResetImpulseVector ();

} // CreateObjects

Function BeginGame starts the game by setting the initial game state, start-
ing the level timer, clearing the Object World of objects, then calling func-
tion CreateObjects above to create new ones.

void BeginGame (){

g_nGameState = INITIAL_GAMESTATE ;

g_cTimer .StartLevelTimer ();

58 3 • A Rigid Body Physics Game

g_cObjectWorld .clear ();

CreateObjects ();

} // BeginGame

Function InitGame initializes your game for you. It asks the Render World
to initialize Direct3D, then to load images from disk. The image files are
specified in gamesettings.xml.

void InitGame (){

g_cRenderWorld .Initialize ();

g_cRenderWorld .LoadImages ();

BeginGame ();

} // InitGame

Function EndGame cleans things up at the end of the game. The only thing
that really can’t clean up after itself is the Render World since DirectX is
a little picky about the order in which things get cleaned up.

void EndGame (){

g_cRenderWorld .End ();

} // EndGame

Function RenderFrame renders a frame of animation. The Render World
does the heavy lifting here. We ask the Render World to start up the
graphics pipeline, and if that fails, we simply leave. Otherwise, we ask the
Render World to draw the background, then the Object World to draw the
objects. It will figure out where the objects should be in Render World and
will ask Render World to draw them there. Finally, it asks Render World to
draw the win-loss message, if any, then to close down the graphics pipeline.

void RenderFrame (){

if(g_cRenderWorld . BeginScene ()){

g_cRenderWorld . DrawBackground ();

g_cObjectWorld .draw ();

g_cRenderWorld . DrawWinLoseMessage (g_nGameState);

g_cRenderWorld .EndScene ();

} //if

} // RenderFrame

Function ProcessFrame is called once per frame of animation. It starts
by telling the Sound Manager that it is starting a new frame. This is to
prevent two identical sounds being played during the same animation frame
since two identical sounds played simultaneously equals one sound played

3.2 • Code Run-Through 59

twice as loud. It then calls on the Object World to move the balls, then
calls function RenderFrame above to draw them in their new positions.

void ProcessFrame (){

g_pSoundManager -> beginframe ();

g_cObjectWorld .move ();

RenderFrame ();

Finally, ProcessFrame checks to see whether the player has won or lost,
and if neither, checks whether the conditions are right for the player to take
another shot (the balls were moving, none have been pocketed, yet they’ve
all stopped), and if they are, it takes the appropriate action.

if(g_cObjectWorld . CueBallDown ())

g_nGameState = LOST_GAMESTATE ;

else if(g_cObjectWorld .BallDown ())

g_nGameState = WON_GAMESTATE ;

else if(g_nGameState == BALLSMOVING_GAMESTATE &&

! g_cObjectWorld .BallDown () &&

g_cObjectWorld . AllBallsStopped ()){

g_nGameState = SETTINGUPSHOT_GAMESTATE;

g_cObjectWorld . ResetImpulseVector ();

}

} // ProcessFrame

Function KeyboardHandler is your keyboard handler. Windows encodes
the key as a member of an enumerated type starting with VK_. If the player
hits the ESC key, then the function returns TRUE, indicating that the player
wants to quit.

BOOL KeyboardHandler (WPARAM keystroke){

switch(keystroke){

case VK_ESCAPE : return TRUE; //quit

The up and down arrow keys move the cue ball vertically if we are in game
state INITIAL_GAMESTATE. It calls the Object World’s AdjustCueBall

function to move the cue ball up or down, then calls its ResetImpulse

Vector function to make sure that the arrow remains pointing to the eight
ball.

case VK_UP:

if(g_nGameState == INITIAL_GAMESTATE){

g_cObjectWorld . AdjustCueBall (MOVEDELTA);

60 3 • A Rigid Body Physics Game

g_cObjectWorld . ResetImpulseVector ();

} //if

break;

case VK_DOWN:

if(g_nGameState == INITIAL_GAMESTATE){

g_cObjectWorld . AdjustCueBall (-MOVEDELTA);

g_cObjectWorld . ResetImpulseVector ();

} //if

break;

The left and right arrow keys control the impulse vector to be applied to the
cue ball. If we are in game states INITIAL_GAMESTATE or SETTINGUPSHOT_
GAMESTATE, then the Object World’s AdjustImpulseVector is called to
add or subtract a small value from the impulse angle.

case VK_LEFT:

if(g_nGameState == SETTINGUPSHOT_GAMESTATE ||

g_nGameState == INITIAL_GAMESTATE)

g_cObjectWorld . AdjustImpulseVector (ANGLEDELTA);

break;

case VK_RIGHT :

if(g_nGameState == SETTINGUPSHOT_GAMESTATE ||

g_nGameState == INITIAL_GAMESTATE)

g_cObjectWorld . AdjustImpulseVector (-ANGLEDELTA);

break;

The final case is the space bar. If the player has won or lost and the
balls have stopped moving, then it restarts the game by calling function
BeginGame described above. It needs to wait for the balls to stop moving
because the player might have sunk the eight ball (which is, albeit tem-
porarily, a win), but the cue ball may continue rolling into a pocket (which
is a lose). Otherwise it shoots.

case VK_SPACE :

if((g_nGameState == WON_GAMESTATE ||

g_nGameState == LOST_GAMESTATE) &&

g_cObjectWorld . AllBallsStopped ())

BeginGame ();

else

if(g_nGameState == SETTINGUPSHOT_GAMESTATE ||

g_nGameState == INITIAL_GAMESTATE){

g_nGameState = BALLSMOVING_GAMESTATE ;

g_cObjectWorld .shoot ();

3.3 • Render World 61

g_pSoundManager ->play(CUE_SOUND);

} //else if

break;

This ends the switch statement and the keyboard handler.

} // switch

return FALSE;

} // KeyboardHandler

Finally, we have the Window Procedure, WindowProc, and WinMain. I
strongly advise you not to mess with these unless you know what you’re
doing. The hard work is handled by my functions DefaultWindowProc and
DefaultWinMain hidden in the Engine code.

LRESULT CALLBACK WindowProc (HWND h, UINT m,

WPARAM w, LPARAM l){

return DefaultWindowProc (h, m, w, l);

} // WindowProc

int WINAPI WinMain(HINSTANCE hI , HINSTANCE hP ,

LPSTR lpC , int nCS){

return DefaultWinMain (hI , hP , lpC , nCS);

} // WinMain

• 3.3 Render World
The Render World takes care of the rendering tasks that are particular
to your game. It is derived from CRenderer, which does the heavy lifting
of interacting with DirectX. It’s a small class with two public member
functions.

class CRenderWorld : public CRenderer {

public:

void DrawWinLoseMessage (GameStateType state);

void LoadImages ();

}; // CRenderWorld

Function DrawWinLossMessage draws a “You lose” or “You win” message
to the screen depending on whether the parameter state indicates that
the player has won or lost. CRenderer’s TextWrite function takes care of

62 3 • A Rigid Body Physics Game

the details of writing text to the screen.2 Nothing is written if neither ball
is in a pocket.

void CRenderWorld :: DrawWinLoseMessage (

GameStateType state)

{

switch(state){

case WON_GAMESTATE :

TextWrite (" You Win!");

break;

case LOST_GAMESTATE :

TextWrite (" Loser !");

break;

} // switch

} // DrawWinLoseMessage

Function LoadImages loads the images for Render World, again using
CRenderer to do the heavy lifting.

void CRenderWorld :: LoadImages (){

LoadBackground ();

Load(ARROW_OBJECT , "arrow ");

Load(CUEBALL_OBJECT , "cueball ");

Load(EIGHTBALL_OBJECT , "eightball ");

} // LoadImages

Note that the second parameter to the Load calls is the value of the name

field in the <sprite> tag in gamesettings.html.

<images >

<image name =" background "

src =" Images \\ pooltable1024x531 .png" />

</images >

<sprites >

<sprite name =" arrow" file =" Images \\ vector.png"/>

<sprite name =" cueball " file =" Images \\ cueball.png"/>

<sprite name =" eightball " file ="Images \\8ball.png"/>

</sprites >

...........................
2The details of which are truly horrendous. Amongst other things, they involve

calling a Windows API function with 14 parameters, 12 of which are zero. Be thankful
that I’ve taken care of it for you.

3.4 • Object World 63

• 3.4 Object World
The Object World is where objects live. In this game, they are the pool
balls that live under the care of a Ball Manager derived from a base Object
Manager class.

• 3.4.1 Class CObjectWorld

Class CObjectWorld implements our abstract Object World. Its task is to
keep track of all the game objects, including the player object. Its private
member variables include a pointer to a Ball Manager, which it will create
at runtime to help keep track of the ball objects.

class CObjectWorld {

private :

CBallManager * m_pBallManager ;

Next, we have some useful member variables that represent the player’s
state: m_fCueBallImpulseAngle is the angle that the cue ball will be fired
at, m_pCueBallObject and m_p8BallObject are handy pointers to the cue-
ball and eight-ball objects, which are otherwise hidden deep in the bowels of
the Object World, as we will see later, and m_bDrawImpulseVector records
whether we want to draw the cue ball’s impulse vector arrow on the screen.

float m_fCueBallImpulseAngle;

CBallObject * m_pCueBallObject ;

CBallObject * m_p8BallObject ;

BOOL m_bDrawImpulseVector ;

Public member functions include a constructor and a create function. The
latter creates a game object at a particular place in the Object World.

public:

CObjectWorld ();

void create(GameObjectType t,

D3DXVECTOR2 position);

Next, function clear clears the Object World of all objects, move moves
all objects, and draw asks the Render World to draw all objects at their
current positions.

void clear ();

void move ();

void draw ();

64 3 • A Rigid Body Physics Game

The next set of functions are to be used by the player to communicate with
the game, or used by the game to communicate with the player. Their
names are descriptive of their functions, so you can read them for yourself.

void ResetImpulseVector ();

void AdjustImpulseVector (float amount);

void AdjustCueBall (float amount);

void shoot ();

BOOL BallDown ();

BOOL CueBallDown ();

BOOL AllBallsStopped ();

}; // CObjectWorld

We start with the Object World constructor which makes a tiny Ball
Manager and sets some member variables to sensible initial values.

CObjectWorld :: CObjectWorld (){

m_pBallManager = new CBallManager (4);

m_fCueBallImpulseAngle = 0.0f;

m_pCueBallObject = m_p8BallObject = NULL;

m_bDrawImpulseVector = TRUE;

} // constructor

The create function creates a ball object and squirrels away a pointer to it
in the correct private member variable. These pointers will be useful later.

void CObjectWorld :: create(

GameObjectType t, D3DXVECTOR2 position){

CGameObject * b;

b = m_pBallManager ->create(t, position);

if(t == CUEBALL_OBJECT)

m_pCueBallObject = (CBallObject *)b;

else if(t == EIGHTBALL_OBJECT)

m_p8BallObject = (CBallObject *)b;

} // create

To clear the Object World we need only to clear the Ball Manager. The
rest of the values can take care of themselves.

void CObjectWorld :: clear (){

m_pBallManager ->clear ();

} // clear

3.4 • Object World 65

Figure 3.5 • Computing the impulse angle α from the impulse vector �v.

The draw function draws all of the objects in the Object World, first draw-
ing the impulse vector if appropriate, then asking the Ball Manager to draw
the balls.

void CObjectWorld :: draw (){

if(m_pCueBallObject){ // draw impulse vector

D3DXVECTOR2 v = m_pCueBallObject ->m_vPosition ;

if(m_bDrawImpulseVector)

g_cRenderWorld .draw(ARROW_OBJECT ,

v.x, v.y, m_fCueBallImpulseAngle);

} //if

m_pBallManager ->draw ();

} // draw

The move function asks the Ball Manager to move the balls, then perform
collision response.

void CObjectWorld :: move (){

m_pBallManager ->move ();

m_pBallManager -> CollisionResponse ();

} // move

ResetImpulseVectormakes the impulse vector point from the cue ball
to the eight ball. This involves computing a new value for m_fCueBallIm
pulseAngle. First we compute a vector v from the cue ball to the eight
ball by computing the difference of their position vectors (see Section 2.7.3
of [Dunn and Parberry 11]). As shown in Figure 3.5, if �v = (�vx, �vy), then

66 3 • A Rigid Body Physics Game

the impulse angle α is given by tanα = �vy/�vx; that is, α = arctan�vy/�vx.
We use the handy math function atan2 that performs the division and the
arctangent for us at the same time.

void CObjectWorld :: ResetImpulseVector (){

m_bDrawImpulseVector = TRUE;

D3DXVECTOR2 v =

m_p8BallObject -> m_vPosition -

m_pCueBallObject -> m_vPosition ;

m_fCueBallImpulseAngle = atan2(v.y, v.x);

} // ResetImpulseVector

Function AdjustImpulseVector is a no-brainer:

void CObjectWorld :: AdjustImpulseVector (float amount){

m_fCueBallImpulseAngle += amount;

} // AdjustImpulseVector

Function AdjustCueBall moves the cue ball up or down. It’s almost a
no-brainer. We just have to make sure that the cue ball stays inside the
rails. Fortunately CBallObject will provide us a handy-dandy function
RailCollision to do that.

void CObjectWorld :: AdjustCueBall (float amount){

if(m_pCueBallObject){

m_pCueBallObject -> m_vPosition .y += amount;

m_pCueBallObject -> RailCollision ();

} //if

} // AdjustCueBall

Function shoot applies the impulse vector to the cue ball. That means
we should stop drawing the impulse vector for a start. Fortunately, CBallOb
ject once again rides to the rescue by providing a function DeliverImpulse.
The impulse magnitude of 40.0f is a kluge.

void CObjectWorld :: shoot (){

m_bDrawImpulseVector = FALSE;

if(m_pCueBallObject)

m_pCueBallObject ->

DeliverImpulse (m_fCueBallImpulseAngle , 40.0f);

} // shoot

3.4 • Object World 67

Function BallDown returns TRUE if one of the balls is in a pocket. We
just check *m_pCueBallObject and *m_p8BallObject to see whether one
of them has their m_bInPocket variable set to TRUE.

BOOL CObjectWorld :: BallDown (){

return m_pCueBallObject ->m_bInPocket ||

m_p8BallObject -> m_bInPocket ;

} // BallDown

CueBallDown does the same thing but just for the cue ball. Since the game
has only an eight ball and a cue ball, there’s no need to write a similar
function for the eight ball.

BOOL CObjectWorld :: CueBallDown (){

return m_pCueBallObject ->m_bInPocket ;

} // CueBallDown

Function AllBallsStopped checks whether all of the balls have stopped.
That’s the signal for the player to shoot again. We just check *m_pCueBall

Object and *m_p8BallObject to see whether both of them have their
m_bAtRest variable set to TRUE.

BOOL CObjectWorld :: AllBallsStopped (){

return m_pCueBallObject ->m_bAtRest &&

m_p8BallObject -> m_bAtRest ;

} // AllBallsStopped

• 3.4.2 Class CBallManager

CBallManager is derived from CObjectManager and adds to it some specif-
ically ball-related member variables and functions.

class CBallManager : public CObjectManager {

private :

void CollisionResponse (int i);

public:

CBallManager (int size);

CGameObject * create(GameObjectType object ,

D3DXVECTOR2 position);

void CollisionResponse ();

}; // CBallManager

68 3 • A Rigid Body Physics Game

The constructor simply passes a work order on to the CObjectManager

constructor.

CBallManager :: CBallManager (int size):

CObjectManager (size){

} // constructor

Function create is essentially the same as CObjectManager::create ex-
cept that it creates a CBallObject instead of a CGameObject. I suppose I
could have used templates here.

CGameObject * CBallManager :: create(

GameObjectType object , D3DXVECTOR2 position)

{

if(m_nCount < m_nSize){

int i=0; while(m_pObjectList [i])i++;

m_pObjectList [i] =

new CBallObject (object , position);

m_nCount ++;

return m_pObjectList [i];

} //if

else return NULL;

} // create

Function CollisionResponse(i) checks for collisions of all balls with the
ball at index i in the Object List. First, we get a handy pointer b1 that
points to the ball at index i, and we check that it makes sense.

void CBallManager :: CollisionResponse (int i){

CBallObject * b1 = (CBallObject *) m_pObjectList [i];

if (!b1 || !(b1 -> m_nObjectType == CUEBALL_OBJECT ||

b1 -> m_nObjectType == EIGHTBALL_OBJECT)) return;

Next, we have a for loop that compares b1 against only higher-indexed
objects (to avoid processing each collision twice). We get a handy-dandy
pointer b2 to the other ball and check that it makes sense too.

for(int j=i+1; j<m_nSize ; j++){

CBallObject * b2 = (CBallObject *) m_pObjectList [j];

if(b2){

Let vDeltaS be the vector difference of the ball’s positions and distance

be the distance between their centers when they collide, which is the sum
of their radii.

3.4 • Object World 69

D3DXVECTOR2 vDeltaS =

b1 -> m_vPosition - b2 ->m_vPosition ;

float distance = (b1 ->m_nSize + b2 ->m_nSize)/2.0f;

If the magnitude of vDeltaS is less than the collision distance distance,
then they collide, so start by making the right sound. We flag both balls
as moving under the assumption that this will be corrected in the next
frame if we get it wrong. Note the use of D3DXVec2LengthSq instead of
D3DXVec2Length to save doing a square root.

if(D3DXVec2LengthSq (& vDeltaS) < distance *distance

&& !(b1 ->m_bAtRest && b2 ->m_bAtRest)){

g_pSoundManager ->play(BALLCLICK_SOUND);

b1 -> m_bAtRest = b2 ->m_bAtRest = FALSE;

Finally, we do the collision response by calling an implementation of the
BallBounce function from Section 2.2.3.

BallBounce (b1 , b2);

} //if close enough

} //if object exists

} //for all objects

} // CollisionResponse

Finally, function CollisionResponse applies CollisionResponse(i) to
all balls in the Object List.

void CBallManager :: CollisionResponse (){

for(int i=0; i < m_nSize ; i++)

CollisionResponse (i);

} // CollisionResponse

• 3.4.3 Class CObjectManager

Class CObjectManager manages a collection of CObjects. It will have an
array m_pObjectList of pointers to Game Objects created at runtime,
a count m_nCount of how many objects are currently in the array,3 and
another counter m_nSize that will be set to the size of the Object List
once we have one.
...........................

3There will be only two in our game of pool, but as the MythBusters say, “Anything
worth doing is worth overdoing.”

70 3 • A Rigid Body Physics Game

class CObjectManager {

protected :

CGameObject * m_pObjectList [MAX_OBJECTS];

int m_nCount ;

int m_nSize ;

Public member functions begin with a constructor and a destructor. Func-
tion create creates a new Game Object of type objecttype and returns
a pointer to it. Functions move and clear do the obvious things to all of
the objects in the Object List.

public:

CObjectManager (int size);

~ CObjectManager ();

CGameObject * create(GameObjectType objecttype);

void move ();

void clear ();

}; // CObjectManager

The constructor creates and initializes an array that it will be using for the
Object List.

CObjectManager :: CObjectManager (int size){

m_pObjectList = new CGameObject * [size];

m_nCount = 0;

for(int i=0; i<size; i++)

m_pObjectList [i] = NULL;

m_nSize = size;

} //for

} // constructor

The destructor riffles through the object array and deletes any Game Ob-
jects that it points to. These will have been created by member function
create below. Then, it destroys the Object List array.

CObjectManager ::~ CObjectManager (){

for(int i=0; i< MAX_OBJECTS ; i++)

delete m_pObjectList [i];

delete [] m_pObjectList ;

} // destructor

Speaking of function create, here it is. It finds the next empty place
in m_pObjectList (if any), creates a new Game Object there, increments
m_nCount, then returns a pointer to the Game Object created, if any.

3.5 • Objects 71

CGameObject * CObjectManager :: create(

GameObjectType objecttype){

if(m_nCount < MAX_OBJECTS){

int i=0; while(m_pObjectList [i])i++;

m_pObjectList [i] = new CGameObject (objecttype);

m_nCount ++;

return m_pObjectList [i];

} //if

else return NULL;

} // create

The move function moves all of the objects in the Object List using their
own personal move functions.

void CObjectManager :: move (){

CGameObject * p;

GameObjectType t;

for(int i=0; i<m_nSize ; i++){

p = m_pObjectList [i];

if(p){

t = p->m_nObjectType ;

if(t == CUEBALL_OBJECT || t == EIGHTBALL_OBJECT)

p->move ();

} //if p

} //for

} // move

Function clear NULLs out the Object List without destroying it.

void CObjectManager :: clear (){

m_nCount = 0;

for(int i=0; i<m_nSize ; i++){

delete m_pObjectList [i];

m_pObjectList [i] = NULL;

} //for

} // clear

• 3.5 Objects
The objects in this game are the pool balls. We have a class that imple-
ments an abstract ball object that does ball-like things and has ball-related
interests, derived from a base game object class that can, in principle, be

72 3 • A Rigid Body Physics Game

used to derive all kinds of useful objects and is designed to encapsulate all
of the things that they are likely to have in common.

• 3.5.1 Class CBallObject

CBallObject is derived from CGameObject and contains specifically ball-
related member variables and functions. It has three friend classes, the
same ones as CGameObject for the same reasons.

class CBallObject : public CGameObject {

friend class CBallManager ;

friend class CObjectWorld ;

friend class CObjectManager ;

Private member variable m_nSize indicates the ball’s size in the Object
World, and m_bInPocket records whether the ball is in a pocket. Pri-
vate member functions PocketCollision and RailCollision are collision-
response functions for the pockets and rails, respectively. Function SetVe

locity sets the ball’s velocity to a specified vector.

private :

int m_nSize;

BOOL m_bInPocket ;

BOOL PocketCollision ();

BOOL RailCollision ();

void SetVelocity (D3DXVECTOR2 velocity);

Public member functions include a constructor, a move function that over-
rides the corresponding CGameEngine function with specifically ball-related
moving activities, and a DeliverImpulse function.

public:

CBallObject (

ObjectType object , D3DXVECTOR2 position);

void ToggleDrawImpulseVector();

void move ();

void draw ();

void DeliverImpulse (float angle , float magnitude);

}; // CBallObject

The CBallObject constructor passes its parameters over to the CGameOb

ject constructor, then sets its ball-related private member variables to
sensible initial values.

3.5 • Objects 73

CBallObject :: CBallObject (

GameObjectType object , D3DXVECTOR2 position):

CGameObject (object){

m_nSize = 50;

m_vPosition = position ;

m_bAtRest = TRUE;

m_bInPocket = FALSE;

} // constructor

Function PocketCollision begins with three kluged-up constants HMAR

GIN, CMARGIN, and VMARGIN. These are, respectively, the distance from
the top and bottom edge of the world to the closest pockets, the diameter
of the center pocket, and the distance from the left and right edge of the
world to the closest pockets. Boolean local variable bVertical determines
if the ball object is close enough to the top or bottom rail to fall into a
pocket, should one be handily nearby (which may not necessarily be the
case).

BOOL CBallObject :: PocketCollision (){

const float HMARGIN = 103.0f;

const float CMARGIN = 10.0f;

const float VMARGIN = 95.0f;

BOOL bVertical = m_vPosition .y < VMARGIN ||

m_vPosition .y > g_nScreenHeight - VMARGIN;

If the ball is close enough to the left or right rails, then it is in a corner
pocket, provided bVertical says it is also close enough to the top or bottom
rails.

if(m_vPosition .x < HMARGIN)

m_bInPocket = bVertical ;

else if(m_vPosition .x > g_nScreenWidth - HMARGIN)

m_bInPocket = bVertical ;

That leaves the center pockets. This is similar, except that you need to be
close to the center of the screen instead of the left or right rails.

else

if(fabs(m_vPosition .x-g_nScreenWidth /2) < CMARGIN)

m_bInPocket = bVertical ;

Finally, some housekeeping. Balls in pockets are at rest.

74 3 • A Rigid Body Physics Game

if(m_bInPocket)

m_bAtRest = TRUE;

return m_bInPocket ;

} // PocketCollision

Function RailCollision performs collision response between the ball and
the rails.4 It has two parameters oldx and oldy that come in with the
ball’s previous position. It also has horizontal and vertical margins similar
to those in function PocketCollision above. They are kluged except that
they are smaller than the latter. Constant fRailRestitution is another
kluged value that represents the springiness (or lack thereof) of the rails.
Boolean variable result is going to record whether we’ve detected a rail
collision.

BOOL CBallObject :: RailCollision (

float oldx , float oldy)

{

const float HMARGIN = 98.0f;

const float VMARGIN = 90.0f;

const float fRailRestitution = 0.75f;

BOOL result=FALSE;

The left and right rails reflect the x component of the ball’s velocity, scaled
by fRailRestitution. Notice that the ball is stepped back to prevent it
not quite making it off the rail due to fRailRestitution being less than
unity, which would result in a double reflection back onto the rail.

if(m_vPosition .x < HMARGIN){ // left

m_vPosition .x = oldx;

m_vVelocity .x = -fRailRestitution *m_vVelocity .x;

result = TRUE;

}

if(m_vPosition .x > g_nScreenWidth - HMARGIN){ // right

m_vPosition .x = oldx;

m_vVelocity .x = -fRailRestitution *m_vVelocity .x;

result = TRUE;

}

...........................
4The edges of the table that the balls (ideally) bonk off.

3.5 • Objects 75

The top and bottom rails reflect the x component of the ball’s velocity,
scaled by fRailRestitution. Notice that the ball is stepped back for the
same reason as before.

// bottom rail

if(m_vPosition .y < VMARGIN){

m_vPosition .y = oldy;

m_vVelocity .y = -fRailRestitution *m_vVelocity .y;

result = TRUE;

}

//top rail

if(m_vPosition .y > g_nScreenHeight - VMARGIN){

m_vPosition .y = oldy;

m_vVelocity .y = -fRailRestitution *m_vVelocity .y;

result = TRUE;

}

return result;

} // RailCollision

The virtual move function bails out if the ball is in a pocket; otherwise,
it begins by letting the CGameObject move function do its stuff.

void CBallObject :: move (){

if(m_bInPocket)return;

CGameObject :: move ();

Next, it does collision response with rails and pockets, playing the appro-
priate sounds and taking the appropriate actions.

if(PocketCollision ()){ // pocket collision

g_pSoundManager ->play(POCKET_SOUND);

m_vPosition = D3DXVECTOR2 (9999, 9999, 9999);

m_bInPocket = TRUE;

m_bAtRest = TRUE; // so it stays undrawn

}

if(RailCollision ()) //rail collision

g_pSoundManager ->play(THUMP_SOUND);

} // move

Function draw draws all of the balls in the Object List by calling their draw
functions.

76 3 • A Rigid Body Physics Game

void CBallManager :: draw (){

CBallObject * p;

for(int i=0; i<m_nSize ; i++){

p = (CBallObject *) m_pObjectList [i];

if(p && !p->m_bInPocket){

D3DXVECTOR2 v = p->m_vPosition ;

g_cRenderWorld .draw(p->m_nObjectType , v.x, v.y);

} //if

} //for

} //draw

Next, we see the code for function DeliverImpulse. We need to use some
trig here to convert an orientation angle into a vector pointing in that
direction.

void CBallObject :: DeliverImpulse (

float angle , float magnitude){

m_bAtRest = FALSE;

m_vVelocity = magnitude *

D3DXVECTOR2 (cos(angle), sin(angle), 0.0f);

} // DeliverImpulse

Function SetVelocity is not just deceptively simple, it is simple. You
might quibble at the first line because velocity might equal zero, but
even so, the value of m_bAtRest will be corrected in the next frame. Put
an if statement on the first line if you insist.

void CBallObject :: SetVelocity (D3DXVECTOR2 velocity){

m_bAtRest = FALSE;

m_vVelocity = velocity ;

} // SetVelocity

• 3.5.2 Class CGameObject

Class CGameObject is a generic game object. It has three friend classes,
the Object Manager and the Ball Manager because they need to manage
it and the Render World because it needs to draw it.

class CGameObject {

friend class CObjectManager ;

friend class CObjectWorld ;

friend class CRenderWorld ;

3.5 • Objects 77

It has protected member variables m_nObjectType (its type), m_vPosition
(its current position), m_vVelocity (its velocity, a vector encoding both
speed and direction), m_nLastMoveTime (the last time the object moved,
probably in the previous animation frame), m_bAtRest (TRUE if and only if
it is at rest), and m_nFrictionTime (a timer for applying friction).

protected :

GameObjectType m_nObjectType ;

D3DXVECTOR2 m_vPosition ;

D3DXVECTOR2 m_vVelocity ;

int m_nLastMoveTime ;

BOOL m_bAtRest ;

int m_nFrictionTime ;

CGameObject also has two public member functions. The first is a construc-
tor that specifies the object’s type. Second, we have virtual function move,
to be overridden in later derived object classes such as CBallObject.

public:

CGameObject (GameObjectType objecttype);

virtual void move ();

}; // CGameObject

The constructor squirrels away the object type and sets member variables
to sensible initial values.

CGameObject :: CGameObject (GameObjectType objecttype){

m_nObjectType = objecttype ;

m_vPosition = m_vVelocity = D3DXVECTOR2 (0, 0, 0);

m_nFrictionTime = g_cTimer .time ();

} // constructor

The Game Object move function begins by computing tfactor, the time
since the object last moved. It then adds to its position m_vPosition the
distance moved since the last frame, assuming it is moving at constant
velocity m_vVelocity, which is m_vVelocity * tfactor scaled back by
an amount SCALE that is kluged up to make the motion look right.

void CGameObject :: move (){

const float SCALE = 20.0f;

int time=g_cTimer .time ();

int dt = time - m_nLastMoveTime ;

m_vPosition += m_vVelocity * (float)dt / SCALE;

m_nLastMoveTime = time;

78 3 • A Rigid Body Physics Game

Friction is then applied by reducing velocity by 5%, but not on each frame,
just 10 times a second. If speed is less than 1.0, the object is stopped. The
numbers 0.95, 10, and 1.0 are kluged to make it look right.

if(g_cTimer .elapsed (m_nFrictionTime , 100))

m_vVelocity *= 0.95f;

if(D3DXVec2LengthSq (& m_vVelocity) < 1.0f)

stop ();

} //move

• 3.6 Exercises
1. Replace the pool table artwork with some of your own. It can look as

bad as that in Figure 3.6. Which constants might you need to change
in the code to make it work?

2. Make a list of places in the code where I’ve put kluged numbers just to
make the code work. Discuss each of them, explaining what they are
for, what range of values can they be allowed to take, which values
are affected by the choice of others, and what I should have done
instead.

3. Explain why the code !(b1->m_bAtRest && b2->m_bAtRest) is need-
ed in function CBallManager::CollisionResponse(i) on p. 69. How
can two nonmoving objects collide?

Figure 3.6 • Hand-drawn artwork.

3.6 • Exercises 79

Figure 3.7 • Exercise 5: A circle (left) and an arrow (right) showing where the
cue ball will hit and the direction that the eight ball will take, respectively.

4. Our ball-ball collisions are perfectly elastic, which means that momen-
tum is conserved. Our ball-rail collisions are inelastic, which means
that it is not. Where would you put code to make ball-ball collisions
inelastic? Go ahead and do it.

5. Use the techniques of Chapter 2.2.3 to add a circle that shows where
the cue ball is going to hit the eight ball (turn it on and off with the
C key) and the direction that the eight ball will take (turn it on and
off with the V key). See Figure 3.7 for how it should look. The circle
and arrow should move as you move the cue ball’s impulse vector,
and of course, they should only appear when both balls are at rest
and the cue ball will actually hit the eight ball.

This page intentionally left blankThis page intentionally left blank

4
A Soft Body Physics Toy

Let’s take a look at some code for Gauss-Seidel relaxation on a chain of
springs joined together to make a soft body. We’ll start with our Pool
End Game code from Chapter 3 with all of the pool game-specific code
removed. Technically what I’m about to show you is a toy, not a game,
because while you can play with it, there is no concept of winning or losing
or even a score. Let’s call it the Ball and Spring Toy.

The Ball and Spring Toy lets you play with a body made up of a bunch
of balls connected by constraints. The constraints can be either stick-like
(with no springiness) or spring-like (with lots of springiness). You can
cycle through various types of bodies and you can apply impulses to them
to see how they react. The toy starts with the body in the air, from which
position it drops under gravity to rest at the bottom of the screen.

The controls are very basic. The space bar applies an impulse in a
random direction, the enter key restarts with the current body type, and
the back key advances to the next body type. The escape key, as always,
quits. These are summarized in Table 4.1.

The primary classes of interest are shown in Table 4.2. The basic ob-
jects are particles and springs, represented by the classes CParticle and

Key Action

ESC Quit
Enter Restart with current body
Back Restart with next body
Space Apply impulse

Table 4.1 • The keys used in the Ball and Spring Toy.

81

82 4 • A Soft Body Physics Toy

Files Class Description

AbstractList.h CAbstractList<> Abstract list template

Particle.cpp, h CParticle Particle
ParticleMan.cpp, h CParticleManager Particle manager

Spring.cpp, h CSpring Spring
SpringMan.cpp, h CSpringManager Spring manager

Body.cpp, h CBody Physics body

Table 4.2 • The primary classes of interest in the Ball and Spring Toy.

CSpring, respectively. Both have their own managers, CParticleManager
and CSpringManager, respectively, that are tasked with maintaining a list
of particles and springs. The class CBody represents a body made up of
particles and springs. The class instances that go into a body that is made
up of two particles joined by a spring are shown in Figure 4.1.

In order to make the creation of Manager classes more seamless, I’ve
started with a templated Abstract List class CAbstractList whose tem-
plate specifies what kind of thing it is to manage. CParticleManager

will be declared as being derived from CAbstractList <CParticle>, and
CSpringManager will be declared as being derived from CAbstractList

<CSpring>.
CAbstractList uses templates1 to abstract away the list maintenance

aspects of the CObjectManager class that we saw in Section 3.4.3. One
queer thing about templated classes is that both the definition and the
code must appear in the same header file, in our case AbstractList.h. If
you ignore this, you are in for a whole world of pain and abstruse compiler
error messages, which is the same thing really.

Let’s suppose we are making a list of things. CAbstractList<thing> is
defined as follows. It has a base m_pList for an array of pointers to things,
a member variable m_nCount for the number of things in the list, and a
member variable m_nSize for the maximum number of things allowed in
the list.

template <class thing >

class CAbstractList {

protected :

thing** m_pList;

int m_nCount ;

int m_nSize ;

...........................
1If you are unfamiliar with templates, I recommend going back to the source [Strous-

trup 97] for more information.

83

Figure 4.1 • How the classes in the Ball and Spring Toy relate to each other.

It has a constructor that has a single parameter, the desired list size, and a
destructor. Function Insert inserts a preexisting thing into the list, while
create creates one and inserts it for you. Function clear clears out the
list, delete-ing all of the things in it.

public:

CAbstractList (int size);

CAbstractList ();

BOOL Insert(thing* newthing);

thing* create ();

void clear ();

}; // CAbstractList

The constructor is pretty basic, creating an array of pointers to things
and setting m_nSize to its size and m_nCount to zero. The list is nulled
out for safety.

template <class thing >

CAbstractList <thing >:: CAbstractList (int size){

m_pList = new thing* [size];

m_nCount = 0; // no things

for(int i=0; i<size; i++)

m_pList [i] = NULL;

m_nSize = size;

} // constructor

84 4 • A Soft Body Physics Toy

The destructor simply undoes all of the good work of the constructor,
taking care to delete all of the things in the list.

template <class thing >

CAbstractList <thing >::~ CAbstractList (){

for(int i=0; i<m_nSize ; i++)

delete m_pList[i];

delete [] m_pList;

} // destructor

Insert inserts a preexisting newthing into the list, returning TRUE if it
succeeded. It looks for the first NULL slot in the list and puts it there.

template <class thing >

BOOL CAbstractList <thing >:: Insert(thing* newthing){

if(m_nCount < m_nSize){

int i=0; while(m_pList [i])i++;

m_pList [i] = newthing ;

m_nCount ++;

return TRUE;

} //if

else return FALSE;

} // Insert

Function create makes a new thing and Inserts it into the list, re-
turning a pointer to the new thing (NULL if it failed).

template <class thing >

thing* CAbstractList <thing >:: create (){

thing* p = new thing ();

if(Insert(p))

return p;

else{

delete p; return NULL;

} //else

} // create

Function clear goes through the whole list and deletes all of the
things in it, setting all the pointers to NULL again.

template <class thing >

void CAbstractList <thing >:: clear(){

m_nCount = 0;

for(int i=0; i<m_nSize ; i++){

4.1 • Particles 85

delete m_pList[i];

m_pList [i] = NULL;

} //for

} // clear

• 4.1 Particles

CParticle represents a particle or moving point in space. It has a lot of
friends because it is a very basic object.

class CParticle {

friend class CParticleManager ;

friend class CSpring ;

friend class CSpringManager ;

friend class CObjectWorld ;

friend class CBody;

Private member variables include the sprite type m_nSpriteType, which
represents how the particle looks in Render World, its position m_vPos,
and its old position m_vOldPos for Verlet integration. The remaining pri-
vate member variables represent its radius, orientation, and the horizon-
tal and vertical scale factors for its sprite in Render World. Function
EdgeCollision detects and responds to the particle’s collision with the
edges of the screen.

private :

SpriteType m_nSpriteType ;

D3DXVECTOR2 m_vPos;

D3DXVECTOR2 m_vOldPos ;

float m_fRadius ;

float m_fAngle ;

float m_fXScale ;

float m_fYScale ;

BOOL EdgeCollision ();

Public member functions include two constructors, one that specifies the
sprite and initial position, and one that doesn’t. The move function moves
the particle using Verlet integration, while DeliverImpulse delivers an
impulse of a given angle and magnitude to the particle.

86 4 • A Soft Body Physics Toy

public:

CParticle (SpriteType sprite , D3DXVECTOR2 position);

CParticle ();

void move ();

void DeliverImpulse (float angle , float magnitude);

}; // CParticle

The constructors are fairly basic. The one without parameters sets the
particle’s m_nSpriteType to INVISIBLE_SPRITE, meaning that it doesn’t
have one and won’t be drawn. This will be used to create the invisible
springs.

CParticle :: CParticle (SpriteType sprite ,

D3DXVECTOR2 position)

{

m_nSpriteType = sprite;

m_fAngle = 0.0f; m_fXScale = m_fYScale = 1.0f;

m_fRadius = 32.0f;

m_vPos = m_vOldPos = position ;

} // constructor

CParticle :: CParticle (){

m_nSpriteType = INVISIBLE_SPRITE ;

m_vPos = m_vOldPos = D3DXVECTOR2 (0, 0);

m_fAngle = 0.0f; m_fXScale = m_fYScale = 1.0f;

m_fRadius = 32.0f;

} // constructor

Function EdgeCollision detects whether the particle has hit the edge
of the screen, and if so, it responds by making the particle bounce off
it. It returns a Boolean that represents whether an edge collision has
occurred. It starts by declaring local variables rebound for the return value,
fRestitution for the coefficient of restitution of the edges (arbitrarily
set to 0.8f), vDelta for the vector difference between the current and
old positions, and MINCOLLISION for the slowest speed at which a bounce
occurs.

BOOL CParticle :: EdgeCollision (){

BOOL rebound = FALSE;

const float fRestitution = 0.8f;

D3DXVECTOR2 vDelta = m_vPos - m_vOldPos ;

const float MINCOLLISIONSPEED = 2.0f;

4.1 • Particles 87

The next set of local variables are the left, right, top, and bottom of the
screen minus a margin of size m_nRadius.

float left , right , top , bottom;

left = bottom = m_fRadius ;

right = g_nScreenWidth - m_fRadius ;

top = g_nScreenHeight - m_fRadius ;

If the particle has hit the left or right wall, then move it to the wall to
prevent interpenetration, reflect the old position in the wall to make the
particle bounce off (see Section 2.2), and set the return value rebound to
TRUE if the particle is moving fast enough to make a noise.

if(m_vPos.x < left || m_vPos.x > right){

m_vPos.x = m_vPos.x < left? left: right;

vDelta.y = -vDelta.y;

m_vOldPos = m_vPos + fRestitution * vDelta;

rebound = rebound ||

fabs(vDelta.x) > MINCOLLISIONSPEED ;

} //if

Horizontal walls are similar. Having checked for both vertical and horizon-
tal walls, we can return the result.

if(m_vPos.y < bottom || m_vPos.y > top){

m_vPos.y = m_vPos.y < bottom? bottom: top;

vDelta.x = -vDelta.x;

m_vOldPos = m_vPos + fRestitution * vDelta;

rebound = rebound ||

fabs(vDelta.y) > MINCOLLISIONSPEED ;

} //if

return rebound;

} // EdgeCollision

The move function moves using Verlet integration (see Section 2.3.2), checks
for an edge collision, and makes the appropriate sound if the collision was
fast enough. The speed test is necessary because the collision detection
will deliver low-velocity collisions that result in an undetectable less than
one pixel bounce. The gravity value of 0.2f is a kluge.

void CParticle :: move (){

D3DXVECTOR2 vTemp = m_vPos;

m_vPos += m_vPos - m_vOldPos ;

88 4 • A Soft Body Physics Toy

m_vOldPos = vTemp;

m_vPos.y -= 0.2f; // gravity

if(EdgeCollision ()){

if(g_nCurrentBody == RAGDOLL_BODY)

g_pSoundManager ->play(OW_SOUND);

else if(m_nSpriteType == BALL_SPRITE)

g_pSoundManager ->play(BOING_SOUND);

else if(m_nSpriteType == WOODCIRCLE_SPRITE)

g_pSoundManager ->play(THUMP_SOUND);

} //if

} //move

Function DeliverImpulse delivers an impulse of a given magnitude at
a given angle by using the same trick we used in function DeliverImpulse

in Section 3.5.1 to find the vector impulse; it then subtracts it from m_vPos

to get the appropriate m_vOldPos.

void CParticle :: DeliverImpulse (

float angle , float magnitude)

{

m_vOldPos = m_vPos - magnitude *

D3DXVECTOR2 (cos(angle), sin(angle));

} // DeliverImpulse

Class CParticleManager is in charge of managing all of the particles in
our game. It is an instance of the templated class CAbstractList, so it has
all of its useful functionality. It has a boring constructor, a function create

that creates a particle, a move function that asks all particles to move, and
a draw function that asks Render World to draw all of the particles. Note
that only particles get drawn since the springs are represented by their
center particles.

class CParticleManager :

public CAbstractList <CParticle >

{

public:

CParticleManager (int size);

CParticle * create(SpriteType sprite ,

D3DXVECTOR2 position);

void move ();

void draw ();

}; // CParticleManager

4.1 • Particles 89

The constructor is, as I’ve said, boring (but essential).

CParticleManager :: CParticleManager (int size):

CAbstractList (size){} // constructor

Function create creates a particle of a given SpriteType and places it
at rest at a given initial position.

CParticle * CParticleManager :: create(

SpriteType sprite , D3DXVECTOR2 position)

{

CParticle * p = CAbstractList :: create ();

if(p){

p-> m_nSpriteType = sprite;

p->m_vPos = p->m_vOldPos = position ;

} //if

return p;

} // create

Function move asks all particles to move, being careful to check for NULL
pointers in case any of the particles have been deleted.

void CParticleManager :: move (){

CParticle * p; //a particle

for(int i=0; i<m_nSize ; i++){

p = m_pList [i]; // handy particle pointer

if(p)p->move (); //make it move

} //for

} // move

Finally, draw asks the Render World to draw all of the particles in the
list at their respective positions, orientations, and scales.

void CParticleManager :: draw (){

CParticle * p;

for(int i=0; i<m_nSize ; i++){

p = m_pList [i]; // handy particle pointer

if(p){ //if there’s a particle there

D3DXVECTOR2 v = p->m_vPos;

g_cRenderWorld .draw(p->m_nSpriteType , v.x, v.y,

p->m_fAngle , p->m_fXScale , p->m_fYScale);

} //if

} //for

} // draw

90 4 • A Soft Body Physics Toy

• 4.2 Springs
Class CSpring represents a spring, which will be managed by a Spring
Manager class CSpringManager and used to make a body class CBody.
Both of these are declared to be friends of CSpring because they will need
access to CSpring’s private member variables. CAbstractList<CSpring>

needs to be a friend too because CSpringManager is an instance of it.

class CSpring {

friend class CAbstractList <CSpring >;

friend class CSpringManager ;

friend class CBody;

CSpring has three private member variables that point to the particles
that make up the spring, m_pV0 and m_pV1 at the ends (drawn as balls in
Render World) and m_pCenter at the center (drawn as a spring in Render
World). Notice that the use of pointers will enable us to share particles at
the end of springs and thus connect them together to make bodies.

private :

CParticle * m_pV0;

CParticle * m_pV1;

CParticle * m_pCenter ;

Its rest length m_fRestLength is the natural length of the spring when
it is not being acted on by longitudinal forces. This will be computed
from the initial positions of m_pV0 and m_pV1. The spring’s coefficient of
restitution m_fRestitution is a measure of its springiness. This should be
between 0.0f and 0.5f with smaller values indicating spring-like behavior
and larger values indicating stick-like tendencies.

float m_fRestLength ;

float m_fRestitution ;

It has two public member functions in addition to a constructor, Relax,
which performs one round of Gauss-Seidel relaxation, and ComputeCenter,
which computes the position of the particle pointed to by m_pCenter from
the positions of the object at the ends. The center gets dragged around by
the endpoints and does not otherwise participate in any motion or velocity
computations.

public:

CSpring ();

4.2 • Springs 91

void Relax ();

void ComputeCenter ();

}; // CSpring

CSpring’s Relax function begins by computing a vector vDelta from
one end of the spring to the other (the direction doesn’t matter), which is
needed to be able to compute the current length fLength of the spring. If
the spring’s current length fLength is significantly different from its rest
length m_fRestLength (which I’ve chosen to mean less than half a pixel
different in Render World), then we are to perform relaxation; otherwise,
it’s hardly worth bothering.

void CSpring :: Relax(){

D3DXVECTOR2 vDelta =

m_pV0 ->m_vPosition - m_pV1 -> m_vPosition ;

float fLength = D3DXVec2Length (& vDelta);

if(fabs(fLength - m_fRestLength) > 0.5f){

Next, the actual relaxation code. Impressive, isn’t it? It should be familiar
to you from function StickRelax in Section 2.4, with the addition of scaling
the change in position by the coefficient of restitution.

vDelta *= 1.0f - m_fRestLength /fLength ;

vDelta *= m_fRestitution ;

m_pV0 ->m_vPosition -= vDelta;

m_pV1 ->m_vPosition += vDelta;

Naturally, we don’t want the balls to go off the edge of the screen, so we
slam in a little edge-collision code.

float r = m_pV0 -> m_fRadius ;

m_pV0 ->m_vPos.x =

clip(r, m_pV0 ->m_vPos.x, g_nScreenWidth -r-1);

m_pV0 ->m_vPos.y =

clip(r, m_pV0 ->m_vPos.y, g_nScreenHeight -r-1);

r = m_pV1 ->m_fRadius ;

m_pV1 ->m_vPos.x =

clip(r, m_pV1 ->m_vPos.x, g_nScreenWidth -r-1);

m_pV1 ->m_vPos.y =

clip(r, m_pV1 ->m_vPos.y, g_nScreenHeight -r-1);

} //if

} // Relax

92 4 • A Soft Body Physics Toy

You may not have seen a clip function before, but all it does is clip the
middle parameter to be between the outside two.

inline float clip(float a, float b, float c){

return max(a, min(b, c));

} //clip

CSpring’s ComputeCenter function begins by storing away the positions
of its endpoints in two handy local variables p0 and p1.

void CSpring :: ComputeCenter (){

D3DXVECTOR2 p0 = m_pV0 ->m_vPosition ;

D3DXVECTOR2 p1 = m_pV1 ->m_vPosition ;

Next, it finds the orientation m_fAngle of the center object, which is the
arctangent of v.y/v.x where v is the vector displacement from one end to
the other. If you’ve forgotten about atan2, the principle is the same as in
the Object World’s ResetImpulseVector function in the Pool End Game,
(see Section 3.4.1), so I won’t belabor the point.

D3DXVECTOR2 v = p0 - p1;

m_fAngle = m_pCenter ->m_fAngle = atan2(v.y, v.x);

The position of the spring’s center is the average of the positions of its
ends, and its horizontal scale is apparent size, the length of v, divided by
its image size, which I’ve hard-coded to 256 because it is.

m_pCenter ->m_vPosition = (p0 + p1)/2.0f;

m_pCenter ->m_fXScale = D3DXVec2Length (&v)/256.0 f;

} // ComputeCenter

Class CSpringManager is in charge of managing all of the springs in
our game. It is an instance of the templated class CAbstractList, so it
has all of its useful functionality. It has a boring constructor, a function
ConnectSpring that creates a spring and connects it to end and center
particles, a Relax function that basically tells all of its springs to chill out
and Relax themselves, and a move function that makes the center points
catch up with where the centers of their springs should be.

class CSpringManager : public CAbstractList <CSpring >{

public:

CSpringManager (int size);

4.2 • Springs 93

CSpring * ConnectSpring (

CParticle * v0 , CParticle * v1 ,

CParticle * cntr , float restitution);

void Relax(int iterations);

void move ();

}; // CSpringManager

The constructor is, as I’ve said, boring (but essential).

CSpringManager :: CSpringManager (int size):

CAbstractList (size){} // constructor

ConnectSpring does the obvious squirreling away of values into spring
member variables. Rest length is just the magnitude of the difference be-
tween the end particle positions since we assume that the end particles are
already in their rest positions.

CSpring * CSpringManager :: ConnectSpring (CParticle * v0 ,

CParticle * v1 , CParticle * cntr , float restitution)

{

if(m_nCount >= m_nSize)return NULL;

CSpring * p = create ();

p->m_pV0 = v0;

p->m_pV1 = v1;

p->m_pCenter = cntr;

D3DXVECTOR2 vDelta = v0 ->m_vPos - v1 ->m_vPos;

p-> m_fRestLength = D3DXVec2Length (& vDelta);

p-> m_fRestitution = restitution ;

return p;

} // ConnectSpring

Relax tells all of the springs in the list to Relax, Gauss-Seidel style.

void CSpringManager :: Relax(int iterations){

for(int i=0; i<iterations ; i++)

for(int j=0; j<m_nSize ; j++){

CSpring * p = m_pObjectList [j];

if(p)p->Relax();

} //for

} // Relax

94 4 • A Soft Body Physics Toy

Finally, move tells all of the springs in the list to compute the positions of
their center particles.

void CSpringManager :: move (){

for(int i=0; i<m_nSize ; i++){

CSpring * p = m_pObjectList [i];

if(p)p->ComputeCenter ();

} //for

} //move

• 4.3 Soft Bodies
Class CBody represents a body made up of particles and springs. It’s going
to keep a list of its particles and springs in case the programmer wants
to provide extra functionality such as modifying or destroying particles
or springs dynamically. The tedious work of managing the particles and
spring is taken care of by the Particle Manager and the Spring Manager,
respectively. GameDefines.h contains an enumerated type for the different
kinds of bodies that are available to play with.

enum BodyType {

CHAIN2_BODY , CHAIN3_BODY , CHAIN4_BODY ,

TRIANGLE_BODY , SQUARE_BODY , WHEEL5_BODY ,

WHEEL6_BODY , RAGDOLL_BODY ,

NUM_BODIES // must be last

}; // BodyType

The bodies that these types describe are as follows:

1. CHAIN2_BODY describes a chain of two balls connected by a constraint,
more of a dumbbell than a chain, really. See Figures 4.2 and 4.4, top.

2. CHAIN3_BODY describes a chain of three balls connected by two con-
straints. See Figures 4.2 and 4.4, second from top.

3. CHAIN4_BODY describes a chain of four balls connected by three con-
straints. See Figures 4.2 and 4.4, third from top.

4. TRIANGLE_BODY describes an equilateral triangle made from three
balls and three constraints. See Figures 4.2 and 4.4, bottom left.

5. SQUARE_BODY describes a square made from four balls and six con-
straints. The extra constraints are cross braces that prevent the whole
thing from collapsing in on itself. See Figures 4.2 and 4.4, bottom
right.

4.3 • Soft Bodies 95

Figure 4.2 • Some simple bodies made from up to four balls and six springs.

Figure 4.3 • Some bodies made from six balls with ten springs (left) and seven
balls with twelve springs (right).

96 4 • A Soft Body Physics Toy

Figure 4.4 • Some simple bodies made from up to four balls and six sticks.

Figure 4.5 • Some bodies made from six balls with ten sticks (left) and seven
balls with twelve sticks (right).

4.3 • Soft Bodies 97

Figure 4.6 • Acceptable level of distortion from small impulses.

6. WHEEL5_BODY describes a wheel-like shape with a hub and five balls
around the periphery, or equivalently, a pentagon with a ball at the
center and spokes radiating out from it. See Figures 4.3 and 4.5, left.

7. WHEEL6_BODY describes a wheel-like shape with a hub and six balls
around the periphery, or equivalently, a hexagon with a ball at the
center and spokes radiating out from it. See Figures 4.3 and 4.5,
right.

8. RAGDOLL_BODY describes a ragdoll that is complicated enough to need
a subsection of its own, Section 4.4.

As you experiment with the bodies in the Ball and Spring Toy, you will
see that the soft bodies distort quite a bit under impulse and on collision
with the walls, as shown, for example, in Figure 4.6. The bodies spring
more or less quickly back to their original shape over the space of a few
seconds of animation. Unfortunately, however, by repeatedly mashing on
the space bar you may be able to get the bodies to distort unnaturally
as shown in Figure 4.7, left. At the extreme, you may be able to jump
the body into an alternate stable state as shown in Figure 4.7, right. The
spring forces all balance out, but the body is all tied up in a knot, which
mirrors what is prone to happen in real life if a young child gets hold of
your bouncy toy. There is really no way to prevent this from happening
other than setting the magnitudes of the constraints and impulses so that
there is insufficient force to turn a body inside out.

• IMPORTANT POINT •
You will inevitably need to fine-tune the magnitudes of your forces and constraints to prevent
soft bodies from reaching an unintended stable state.

98 4 • A Soft Body Physics Toy

Figure 4.7 • Unacceptable level of distortion from large impulses.

First, the private member variables. CBody begins with a particle
pointer array m_pPt , the number of particles in it m_nParticleCount,
and the maximum number allowed m_nParticleMax.

class CBody{

private :

CParticle ** m_pPt;

int m_nParticleCount ;

int m_nParticleMax ;

It also has a spring pointer array m_pSpring, the number of springs in it
m_nSpringCount, and the maximum number allowed m_nSpringMax. There
is another array m_pCtr of pointers to particles at the spring centers, but
this is more in the way of a temporary array to be used while constructing
the body.

CSpring ** m_pSpring ;

CParticle ** m_pCtr;

int m_nSpringCount ;

int m_nSpringMax ;

4.3 • Soft Bodies 99

There is a special particle pointer m_pEdgeParticle that we are going
to make sure points to a particle on the edge of the body. Delivering an
impulse to this point will make the body rotate.

CParticle * m_pEdgeParticle ;

Since it is going to be interacting with the Particle Manager and the
Spring Manager a lot (where “interacting with” means “begging them to
do all the hard work”), it’s useful for a body to have direct pointers to
them.

CParticleManager * m_pPMan ;

CSpringManager * m_pSMan ;

Function ChooseSprites chooses whether to draw balls and springs or
circles and sticks, ConnectSpring connects up a spring between two par-
ticles, CreateEdgeCenter creates a center point for a spring, and Create

Point creates a new particle.

void ChooseSprites (

SpriteType & ball , SpriteType & spring , float r);

void ConnectSpring (

int p0 , int p1 , int s, float r=0.5f);

void CreateEdgeCenter (int edge ,

SpriteType sprite);

CParticle * CreatePoint (

int point , SpriteType sprite , D3DXVECTOR2 v);

Next, the public member functions. There is a constructor, a destruc-
tor, various Make functions that make different kinds of bodies, Deliver
Impulse and ApplyTorque functions that do what their names imply, a
Teleport function that magically shifts the body to a new location with-
out disturbing the springs or particles, and a move function that handles
the only detail of body motion not already covered elsewhere, which is
setting the orientation of the springs’ end particles correctly.

public:

CBody(CParticleManager * p, CSpringManager * s);

~CBody ();

CParticle * MakeChain (

int count , int radius , float r, float angle);

CParticle * MakeTriangle (int radius , float r);

100 4 • A Soft Body Physics Toy

CParticle * MakeSquare (int radius , float r);

CParticle * MakeWheel (int sides ,

int radius , float r);

CParticle * MakeRagdoll ();

void DeliverImpulse (float angle , float magnitude);

void ApplyTorque (float angle , float magnitude);

void Teleport (float xdelta , float ydelta);

void move ();

}; // CBody

The constructor and destructor behave completely as expected.

CBody:: CBody(CParticleManager * p, CSpringManager * s){

m_pPMan = p; m_pSMan = s;

m_pPt = NULL; m_nParticleCount = m_nParticleMax = 0;

m_pSpring = NULL; m_nSpringCount = m_nSpringMax = 0;

m_pEdgeParticle = NULL;

} // constructor

CBody::~ CBody (){

delete [] m_pPt;

delete [] m_pSpring ;

} // destructor

Function ChooseSprites uses a restitution value r provided as a pa-
rameter to set the call-by-reference parameters ball and spring to the
appropriate sprite type.

void CBody:: ChooseSprites (

SpriteType & ball , SpriteType & spring , float r)

{

if(r > 0.49f){

ball = WOODCIRCLE_SPRITE ; spring = STICK_SPRITE ;

} //if

else{ // springs and balls

ball = BALL_SPRITE ; spring = SPRING_SPRITE ;

} //else

} // ChooseSprites

Function ConnectSpring gives us a readable shorthand for connecting a
spring.

4.3 • Soft Bodies 101

void CBody:: ConnectSpring (

int p0 , int p1 , int s, float r)

{

m_pSpring [s] = m_pSMan ->

ConnectSpring (m_pPt[p0], m_pPt[p1], m_pCtr[s], r);

} // ConnectSpring

Function CreateEdgeCenter gives us a readable shorthand for creating a
spring’s center particle.

void CBody:: CreateEdgeCenter (

int edge , SpriteType sprite)

{

m_pCtr[edge] =

m_pPMan ->create(sprite , D3DXVECTOR2 ());

} // CreateEdgeCenter

Function CreatePoint gives us a readable shorthand for creating a general
body particle.

CParticle * CBody:: CreatePoint (

int point , SpriteType sprite , D3DXVECTOR2 v)

{

m_pPt[point] = m_pPMan ->create(sprite , v);

return m_pPt[point];

} // CreatePoint

Function DeliverImpulse delivers an impulse to all of the body’s par-
ticles at once, so that the springs are neither compressed nor expanded.

void CBody:: DeliverImpulse (

float angle , float magnitude)

{

for(int i=0; i< m_nParticleCount ; i++)

if(m_pPt[i])

m_pPt[i]->DeliverImpulse (angle , magnitude);

} // DeliverImpulse

Function ApplyTorque applies a torque by delivering an impulse to
an edge particle, assuming that whatever Make function made the body
assigned this value correctly.

102 4 • A Soft Body Physics Toy

void CBody:: ApplyTorque (float angle , float magnitude){

if(m_nParticleCount > 0 && m_pPt [1])

m_pPt[1]-> DeliverImpulse (angle , magnitude);

} // ApplyTorque

Function Teleport adds a delta value to each particle’s current and old
positions so that it is moved without disturbing the springs.

void CBody:: Teleport (float xdelta , float ydelta){

for(int i=0; i< m_nParticleCount ; i++){

m_pPt[i]->m_vPos.x += xdelta;

m_pPt[i]->m_vPos.y += ydelta;

m_pPt[i]->m_vOldPos .x += xdelta;

m_pPt[i]->m_vOldPos .y += ydelta;

} //for

} // Teleport

Function move handles the only detail of body motion not already cov-
ered elsewhere, that is, setting the orientation of the springs’ end particles
correctly so that the springs are oriented from one endpoint to the other.
Of course, we don’t apply this to shiny particles such as the ones at the end
of SPRING_SPRITEs, because these look the same however they are oriented,
simply reflecting their faux surroundings.

void CBody::move (){

for(int i=0; i< m_nSpringCount ; i++)

if(m_pSpring [i] && m_pSpring [i]->m_pCenter &&

m_pSpring [i]->m_pCenter ->

m_nSpriteType == STICK_SPRITE)

m_pSpring [i]->m_pV0 ->m_fAngle =

m_pSpring [i]->m_pV1 ->m_fAngle =

m_pSpring [i]->m_pCenter -> m_fAngle ;

} //move

Since the functions to make various kinds of bodies look remarkably
similar, I’ll just describe one here and leave you to read the rest yourself in
the code. Function MakeTriangle has two parameters, the radius, which
we’ve taken to be half of the length of the sides, and the coefficient of
restitution r. A triangle has three springs, three particles for the vertices
at the corners, and three particles for the centers of the springs. We start
by making space for them.

4.3 • Soft Bodies 103

CParticle * CBody:: MakeTriangle (int radius , float r){

m_nParticleCount = m_nParticleMax = 3;

m_pPt = new CParticle * [m_nParticleMax];

m_nSpringCount = m_nSpringMax = 3;

m_pCtr = new CParticle * [m_nSpringMax];

m_pSpring = new CSpring * [m_nSpringMax];

Next, we decide what kind of sprites to use, springs and balls or sticks
and circles, and we pick a vector v position as a starting point for the first
vertex of the triangle.

SpriteType nVertexObject , nEdgeObject ;

ChooseSprites (nVertexObject , nEdgeObject , r);

D3DXVECTOR2 v = D3DXVECTOR2 (

g_nScreenWidth /2.0f,

g_nScreenHeight /2.0f + radius);

Next, we create the particles for the centers of the springs.

for(int i=0; i<3; i++)

CreateEdgeCenter (i, nEdgeObject);

Now for the three particles at the corners of the triangle.

CreatePoint (0, nVertexObject , v);

v.x += radius;

v.y -= radius * tan(D3DX_PI /3.0f);

CreatePoint (1, nVertexObject , v);

v.x -= 2.0f * radius;

CreatePoint (2, nVertexObject , v);

The last act of creation is to hook up the springs to the corner particles
using the convenient ConnectSpring function that I talked about earlier.

ConnectSpring (0, 1, 0, r);

ConnectSpring (1, 2, 1, r);

ConnectSpring (2, 0, 2, r);

Now, we just need to clean up and exit. We reclaim the space for the m_pCtr
array since we’re no longer going to need it, but we keep the m_pPt and
m_pSpring arrays in case we need them for things like applying forces to

104 4 • A Soft Body Physics Toy

Figure 4.8 • Woodie the Zen Master with yoga disciples at his feet.

particles or destroying springs. We reclaim the memory in the destructor,
naturally.

m_pEdgeParticle = m_pPt [0];

delete [] m_pCtr;

return m_pPt [0];

} // MakeTriangle

• 4.4 Ragdoll Physics
Let’s construct a wooden ragdoll robot named, appropriately, Woodie.
There’s nothing to prevent us from hooking up a few chains from the pre-
vious section and calling them a “ragdoll.” In a sense, it is a perfectly
good ragdoll but it would be a little more impressive if it didn’t flop about
quite so much. Take a look at Figure 4.8. The two Woodies huddled in
heaps on the floor may in fact be advanced yoga disciples or they may,
like Marvin the Paranoid Android, be terminally depressed. Let’s see if
we can make Woodie more human-like. If you apply various impulses to
him, you should see him strike various vaguely humanoid poses in flight in
Figure 4.9. That’s what we are aiming for.

We’re going to create Woodie out of sticks, springs, and balls.2 His
skeleton will be made of balls and sticks (Figure 4.10, left), and a ju-
dicious placement of cross-braced springs will keep his limbs constrained
(Figure 4.10, right). We start by defining 14 points on Woodie’s skeleton
...........................

2Would it were so easy in real life.

4.4 • Ragdoll Physics 105

Figure 4.9 • Woodie the ragdoll robot falling with style.

Figure 4.10 • Woodie’s basic skeleton (left), with springs to restrain flopping
limbs (right).

106 4 • A Soft Body Physics Toy

Figure 4.11 • Points on Woodie’s skeleton.

using an enumerated type PointType where balls are going to be placed.
These points correspond to the dots in Figure 4.11.

enum PointType {

HEAD_POINT , STERNUM_POINT ,

LEFT_HIP_POINT , RIGHT_HIP_POINT ,

LEFT_SHOULDER_POINT , RIGHT_SHOULDER_POINT ,

LEFT_ELBOW_POINT , RIGHT_ELBOW_POINT ,

LEFT_HAND_POINT , RIGHT_HAND_POINT ,

LEFT_KNEE_POINT , RIGHT_KNEE_POINT ,

LEFT_FOOT_POINT , RIGHT_FOOT_POINT ,

NUM_POINTS

}; // PointType

The enumerated type EdgeType represents the sticks and springs that
join up Woodie’s points. First, we have 11 edge types that correspond in
a vague way to bones in the human body (see Figure 4.12).

enum EdgeType {

NECK_BONE ,

LEFT_COLLAR_BONE , RIGHT_COLLAR_BONE ,

LEFT_HUMERUS_BONE , RIGHT_HUMERUS_BONE ,

4.4 • Ragdoll Physics 107

Figure 4.12 • Woodie’s bones, the sticks that correspond roughly to human
bones.

LEFT_ULNUS_BONE , RIGHT_ULNUS_BONE ,

LEFT_THIGH_BONE , RIGHT_THIGH_BONE ,

LEFT_SHIN_BONE , RIGHT_SHIN_BONE ,

Bracers don’t actually correspond to human bones, but they serve to brace
Woodie’s torso to prevent it collapsing in on itself (see Figure 4.13). We
need six of those.

Figure 4.13 • Woodie’s bracers, the sticks that serve to brace his torso internally.

108 4 • A Soft Body Physics Toy

Figure 4.14 • The dotted lines are springs that prop up Woodie’s head.

Figure 4.15 • The dotted lines are springs keep Woodie’s arms from flopping
around.

HIP_BRACER , SHOULDER_BRACER ,

LEFT_SHOULDER_BRACER , RIGHT_SHOULDER_BRACER ,

LEFT_NECK_BRACER , RIGHT_NECK_BRACER ,

Finally, we need 12 springs to enforce constraints that keep Woodie in some
semblance of a basic humanoid form (see Figures 4.14–4.16).

LEFT_HEAD_SPRING , RIGHT_HEAD_SPRING ,

FEET_SPRING , LEFT_FOOT_SPRING , RIGHT_FOOT_SPRING ,

LEFT_KNEE_SPRING , RIGHT_KNEE_SPRING ,

HANDS_SPRING , LEFT_ELBOW_SPRING , RIGHT_ELBOW_SPRING ,

LEFT_HAND_SPRING , RIGHT_HAND_SPRING ,

NUM_EDGES

}; // EdgeType

Now, it’s just a matter of creating the particles in the right places and
hooking them up with springs and sticks. The details are in function

4.5 • Exercises 109

Figure 4.16 • The dotted lines are springs keep Woodie’s legs from flopping
around.

MakeRagdoll. It’s just a more complicated version of the function MakeTri

angle that we saw in the previous subsection, so I won’t bore you with the
details here. Make sure that you read the code yourself, though.

• 4.5 Exercises

1. The code in this chapter assumes that particles have unit mass. Start
by adding an m_nMass private member variable to CParticle. What
parts of the code should change? Go ahead and code it up. Create a
body that shows off your new effect.

2. Add functionality for springs that only expand (they never get shorter
than their rest length) and springs that only contract (they never get
longer than their rest length). Create a body that shows off your new
effect.

3. Add functionality for springs to have a minimum compressed length
m_fMinCompressedLength that they never get compressed beyond.
Create a body that shows off your new effect.

4. Make a Body Manager CBodyManager from the Abstract List CAb

stractList<CBody>, and use it to create a toy with more than two
bodies to play with at a time.

5. Customize Woodie so that he looks like a different robot. Reskinning
him with different images doesn’t require any coding (Figure 4.17,
center). Try changing the code so that his proportions are different,
and add functionality to allow different sprites for different parts of
his body (for example, Figure 4.17, right).

110 4 • A Soft Body Physics Toy

Figure 4.17 • Woodie and his family.

6.* Implement particle-particle collision detection and response. One

way to do this is to reorient so that the tangent between the two
colliding particles is vertical, then reuse or recycle the code from
CParticle’s EdgeCollision function.

Part II

Game Physics with Box2D

This page intentionally left blankThis page intentionally left blank

5
Getting Started

This chapter is divided into three sections that help you get started with
Box2D. Section 5.1 describes how to download and install Box2D for use
with Visual Studio 10. Section 5.2 gives you an overview of the structure
and parts of Box2D. Section 5.4 starts you off with a simple Box2D appli-
cation to whet your appetite for what Box2D can do. We end in Section 5.5
with some exercises for the reader.

Whether you read this chapter or not is up to you. If you’re a beginner,
you should definitely read it. If you’re advanced, perhaps you should at
least skim through it.

• 5.1 Download and Set Up Box2D
The four steps that you need to go through to use Box2D in your game are

1. download Box2D,

2. install the Box2D header files,

3. change the Visual Studio code generation settings,

4. build and install the Box2D library file Box2D.lib.

In more detail:

1. Download Box2D. Go to the Box2D website [Catto 12], click on the
downloads link, then click on the Box2D_v2.2.1.zip link.1 This will
download the Box2D_v2.2.1.zip folder to your computer.

...........................
1The details will probably have changed since I wrote this. In particular I expect the

2.2.1 to be larger. I expect you can figure it out for yourself.

113

114 5 • Getting Started

Figure 5.1 • Adding your dev folder to Visual Studio’s list of Includes. Type
your dev folder’s name into the circled text box.

2. Install the Box2D header files.

(a) Inside Box2D_v2.2.1.zip, you will find a folder called Box2D.
Copy it into your dev folder. (While you are there, grab the
Box2D Manual [Catto 11], which will also be useful to you in
understanding Box2D.)

(b) Add your dev folder to your Visual Studio project Include di-
rectories.2 (See Figure 5.1.)

(c) In your source code, #include <Box2D\Box2D.h>.

3. Change the Visual Studio code generation settings. If you haven’t
done so already, you need to change Visual Studio’s code generation
settings to Multi-Threaded DLL. Right-click on your project and se-
lect Properties. In the Property Pages dialog box (shown in Fig-
ure 5.2), select Configuration Properties\C/C++\Code Generation
in the left-hand pane. In the right-hand pane, select Runtime library
and change it to Multi-threaded DLL(MD). You should do this for
both release and debug configurations, which you select using the
drop-down menu at top left of the Property Pages dialog box.

4. Build and install the Box2D library file Box2D.lib.

(a) Inside Box2D_v2.2.1.zip you will find a folder called Build.
Copy it out of the zip file if you haven’t done so already. Open
Box2D.sln in the Build folder with Visual Studio.

...........................
2I know this sounds weird, but it’s true.

5.2 • Overview of Box2D 115

Figure 5.2 • Setting the code generation settings in Visual Studio’s Property
Pages dialog box.

(b) Build in Release mode, then close Visual Studio.

(c) Copy Box2D.lib from Build\vs10\bin\Release, and paste it into
a new folder called lib in your dev folder.

(d) Add the new lib folder to Visual Studio’s library directories. In
the Property Pages dialog box (shown in Figure 5.2), select Con-
figuration Properties\VC++ Directories in the left-hand pane.
In the right-hand pane, select Library Directories and add your
new lib folder to the list. You should again do this for both
release and debug configurations.

(e) Add Box2D.lib to your dev project. This time, in the left-hand
pane of the Property Pages dialog box (shown in Figure 5.2), se-
lect Configuration Properties\Linker\Input. Then select Addi-
tional Dependencies in the right-hand pane, and add Box2D.lib

to the list of library files. You should again do this for both re-
lease and debug configurations.

• 5.2 Overview of Box2D
In Chapter 3, we saw how to write code for some simple physics into a rudi-
mentary game engine. The code ended up being scattered between several

116 5 • Getting Started

Figure 5.3 • Adding the Physics World to Figure 1.1.

source-code files, with motion code handled by an Object and collision de-
tection and response code in the Object Manager. This wasn’t too onerous
in Chapter 3, because the code was so simple, but by the time we got to
Chapter 2, the code started to get complicated enough to be a world of its
own, which we will call Physics World (see Figure 5.3). Box2D provides
you with a Physics World that handles physics calculations for your Object
World.

Let’s look at a quick run-through of how Physics World, Object World,
and Render World interact in Figure 5.4. It begins with the game loop in
MyGame.cpp. Within that loop, your code calls RenderFrame to render a
frame of animation to the video screen. RenderFrame asks Object World to
draw the objects in the game, which include a pirate. RenderFrame can’t
ask Render World to draw the pirate yet, because while Render World
contains the pirate’s sprite image read in from a file, it doesn’t know the
pirate’s location in the world. Object World gets this from Physics World,
then tells it to Render World, which now has all of the information that it
needs to know to draw the pirate to the screen.

Before we start looking at code in Section 5.4, we need definitions for
some of the terms used in Box2D. A shape is a two-dimensional geometric
object such as a circle or a polygon. A fixture consists of a shape plus some
additional physical coefficients such as density, friction, and coefficient of
restitution. A body is the abstract representation of a physical object in 2D
space. It consists of a fixture plus some other physical properties such as
position and orientation. A joint is a constraint used to hold two or more
bodies together. It consists of a joint type, various coefficients depending
on the type of joint (for example, an anchor point that specifies the point
at which two bodies are connected by the joint), and pointers to the bodies
that it constrains. Figure 5.5 shows how these concepts work together to
represent a pair of objects connected by a joint.

5.2 • Overview of Box2D 117

Figure 5.4 • How Physics World fits into Figure 1.2.

Figure 5.5 • How the Box2D core concepts of bodies, fixtures, shapes, and joints
are used to represent the compound object at top.

118 5 • Getting Started

Figure 5.6 • How a float is stored in binary according to the IEEE 754 Stan-
dard.

• 5.3 Units
Box2D uses floats, which are 32-bit floating-point numbers. According to
the IEEE 754 Standard, they are stored using a sign bit, an 8-bit integer
exponent, and a 23-bit positive integer mantissa, as shown in Figure 5.6.
Since the exponent x is a signed 8-bit integer, −27 ≤ x < 27; that is,
−128 ≤ x < 128. Since the mantissam is a 24-bit positive integer, 0 ≤ m <
224; that is, 0 ≤ m < 16, 777, 216. A float with sign s = ±1, exponent
x �= 0, and mantissa m represents the number s(1 +m/223)2x. (If x = 0,
it represents the number m/223.) I’m probably exhausting your patience
with all of this detail, but suffice it to say that floats can store at most 232

different values, and their precision is equivalent to about log10 2
24 ≈ 7.2

decimal digits.
Floating-point calculations can go astray by surprisingly large amounts

due to round-off error. To make things easier for humans to understand,
let’s consider what would happen if we stored numbers using decimal float-
ing point instead of binary. Here’s an example3 of a single floating point
operation that is off by more than 20%. Suppose we want to compute

123457.1467− 123456.659

in decimal floating point with six significant figures after the decimal point
(and one before it), as shown in Figure 5.7. The first number, 123457.1467,
is represented by

x = 5, m = 1.234571.

The second number, 123456.659, is represented by

x = 5, m = 1.234567.

Subtracting the second number from the first gives us

x = 5, m = 1.234571− 1.234567 = 0.000004.

The result is therefore 0.000004 × 105 = 0.4. But the correct answer is
123457.1467− 123456.659 = 0.4877. The floating point answer of 0.4 is off
by a factor of 0.887/0.4887≈ 22%.
...........................

3I admit it, I got it from Wikipedia.

5.4 • Our First Box2D App 119

Figure 5.7 • How a float could be stored in decimal in our example.

As you can imagine, this error gets compounded and magnified during
each sequence of floating-point operations. Fortunately for us, there is a
rich area of mathematics called numerical analysis that studies numerical
approximations such as these. There are well-studied methods for limiting
the propagation of round-off errors caused by floating-point computations.
The Box2D manual [Catto 11] is careful to explain that the use of these
methods in Box2D requires judicious use of the precision offered by floats.
It would be unwise, for example, to measure all distances as integer val-
ues. That would essentially be throwing away the exponent part, reducing
floats to 23-bit integers, which is foolish when you compare that to the
32 bits available in ints.

More precisely, Box2D has been tuned to work well for distance units be-
tween 0.1 and 10.0. This means that you should measure things in Physics
World in different units than you use for Render World.

• IMPORTANT POINT •
Box2D is tuned for distance units between 0.1 and 10. Do not use Render World coordinates
in Physics World. If you ignore this advice, you may find that Box2D’s numerical computations
fail to stabilize. For example, if your bouncing balls seem to bounce forever, first check on
your Physics World units.

• 5.4 Our First Box2D App
Let’s go ahead and make a simple Box2D App. It won’t be a game yet,
but let’s at least prove that we can wire up Box2D to a rendering engine.
Even if you don’t like the rendering engine in Chapter 3, at least it will
serve as an example of how easy the process is. This is boring. Hit the
space bar once and you’ll see a falling object (Figure 5.8). Hold down the
space bar for a couple of seconds and the autorepeat will get you many
objects (Figure 5.9). Hold it down for longer and you’ll see a continuous
stream of objects (Figure 5.10) that will stop when the screen is about full

120 5 • Getting Started

Figure 5.8 • Hit the space bar, and you’ll get a ball or a book falling from the
top of the screen.

Figure 5.9 • Autorepeat gets more objects to fall from the sky.

5.4 • Our First Box2D App 121

Figure 5.10 • After more time on the autorepeat, even more objects fall from
the sky.

(Figure 5.11). At this point, hitting or holding down the space bar will
do nothing, but hitting the backspace key will reset you back to the start
conditions (Figure 5.10), and you can begin again.4

In summary, here’s what we have to do. Take the code from the Pool
End Game in Chapter 3 and rip out all pool-specific declarations and defi-
nitions. Make sure that you rip out all of the code for motion and collision
response while you’re in there. Then, do the following:

1. MyGame.cpp: Declare a b2World structure for the Physics World.

2. NonPlayerObjects.cpp: Delete everything and replace it with new
functions that create objects in parallel in both Physics World and
Object World.

3. MyGame.cpp: Call the functions from NonPlayerObjects.cpp as needed
to create game objects.

4. Object.cpp: Make the destructor ask the Physics World to destroy
the matching Physics body. Change the draw function to get the
object’s position and orientation from the Physics World.

5. ObjectManager.cpp: The move function now needs only to ask the
Physics World to perform a simulation step.

...........................
4Particularly if you are easily entertained.

122 5 • Getting Started

Figure 5.11 • Eventually, they stop falling no matter how much you abuse the
space bar. The Object Manager is full. There are 720 objects here.

We’re going to use function RW2PW defined in gamedefines.h along with
its inverse PW2PRW. Remember the advice from Section 5.3 telling us to keep
the size of Physics World objects coordinates between 0.1 and 10.0? The
maximum size of our game objects in Render World is 128 × 128 pixels.
Dividing this by 10.0 gives Physics World objects with maximum height
and width 12.8, which is (by experiment) close enough to 10.0 to make
everything converge properly.

const float fPRV = 10.0f;

inline float PW2RW(float x){ return x*fPRV ;};

inline float RW2PW(float x){ return x/fPRV ;};

inline float RW2PW(int x){ return (float)x/fPRV ;};

We start by creating a Box2D Physics World in global variable g_b2d

PhysicsWorld in file MyGame.cpp. The b2World constructor takes a single
parameter, a b2Vec2 that specifies the direction and magnitude of the force
of gravity. I want it to be 100 pixels per second per second downwards in
Render World, but of course, b2World expects things to be in PhysicsWorld
units, so I’d better use my RW2PW function. Gravity in Physics World is
therefore b2Vec2(0, RW2PW(-100)).

b2World g_b2dPhysicsWorld (b2Vec2(0, RW2PW (-100)));

5.4 • Our First Box2D App 123

Box2D makes the code for the creation of game objects a little longer than
our old CreateObjects function on p. 57 in Chapter 3 because we need
to go through the right incantations to create things in the new Box2D
Physics World. I have CreateObjects call CreateWorldEdges, which I’ve
put out of the way in NonPlayerObjects.cpp. It’s a good idea to put all
of your object-creation code into a separate file so that you don’t have to
scroll through it on the way to something else.

CreateWorldEdges starts by getting the Object World width and height
into local variables w and h, respectively. These are in Render World units,
remember. We translate them into Physics World units using RW2PW, and
double h so that the top of the Physics World extends off the top of the
screen in Render World.

void CreateWorldEdges (){

float w, h;

g_cObjectWorld .GetWorldSize (w, h);

w = RW2PW(w);

h = RW2PW(2.0f * h);

To make things less confusing, let’s define four vertices at the corners of
Physics World. Figure 5.12 shows how the edges of Physics World defined
by these vertices line up with the screen in Render World.

const b2Vec2 vBottomLeft = b2Vec2(0, 0);

const b2Vec2 vBottomRight = b2Vec2(w, 0);

const b2Vec2 vTopLeft = b2Vec2(0, h);

const b2Vec2 vTopRight = b2Vec2(w, h);

First, we need a ground object, which we will put at the bottom of Physics
World by setting its y-coordinate equal to zero. Start by creating a default
body definition b2BodyDef called bd. Box2D is great at having constructors
for everything, so we won’t actually have to change any of it default values.
We then use bd to create a b2Body called edge.

b2BodyDef bd;

b2Body* edge = g_b2dPhysicsWorld . CreateBody (&bd);

Make a b2EdgeShape called shape and use its Set function to make it
run across the whole of Physics World horizontally from (0, 0) to
(RW2PW(w), 0). Create a fixture on edgewith shape shape by using edge’s
CreateFixture function.

124 5 • Getting Started

Figure 5.12 • The edges of the Physics World and how they line up with the
screen in Render World.

b2EdgeShape shape;

shape.Set(vBottomLeft , vBottomRight);

edge ->CreateFixture (&shape , 0);

Next, we adjust the shape to the left vertical side of Physics World and
attach it to a fixture on edge. Notice that bodies can have multiple fixtures.

shape.Set(vBottomLeft , vTopLeft);

edge ->CreateFixture (&shape , 0);

5.4 • Our First Box2D App 125

Finally, we attach a fixture for the right vertical side of Physics World to
edge. That completes the definition of CreateWorldEdges in NonPlayer

Objects.cpp.

shape.Set(vBottomRight , vTopRight);

edge ->CreateFixture (&shape , 0);

} // CreateWorldEdges

Objects also are created in response to player input. You’ll find these
changes in function KeyboardHandler in file MyGame.cpp. Let’s create
a ball or a block in response to VK_SPACE. We’ve created two functions
CreateBall and CreateBook in NonPlayerObjects.cpp to help us out.
Both functions take two parameters specifying the coordinates of the cre-
ated body in Physics World. CreateBook starts by creating a BOOK_OBJECT
in Object World, bailing out if Object World is full. We’ll save a pointer
pGameObject for later to link the Object World body to the Physics body so
that the Object World knows important things like its position in Physics
World.

void CreateBook (float x, float y){

CGameObject * pGameObject =

g_cObjectWorld .create(BOOK_OBJECT);

if(pGameObject == NULL)return;

The Physics World work begins with the declaration of a b2BodyDef struc-
ture called bd. We set bd to indicate that the book is a b2_dynamicBody,
which means that the Box2D simulation engine will take care of moving
it about in Physics World. We also set db to determine the book’s initial
position in Physics World.

b2BodyDef bd;

bd.type = b2_dynamicBody ;

bd.position .Set(x, y);

We define its shape using a b2PolygonShape called bookshape and take
advantage of its handy SetAsBox function to make it a box of the appro-
priate height and width. Pulling up cover.png from the Images folder,
we see that the book image is 54 × 64 pixels. That means that it is
54 × 64 in Render World and RW2PW(54) × RW2PW(64) in Physics World.
Perhaps counterintuitively,5 function SetAsBox requires half-widths and

...........................
5Depending on your mindset.

126 5 • Getting Started

half-heights, which is why you see SetAsBox(RW2PW(27), RW2PW(32)), not
SetAsBox(RW2PW(54), RW2PW(64)) below.

b2PolygonShape bookshape ;

bookshape .SetAsBox (RW2PW(27), RW2PW (32));

Next, a b2FixtureDef structure called bookfd is filled in with the book’s
shape, density, and coefficient of restitution.

b2FixtureDef bookfd;

bookfd.shape = &bookshape ;

bookfd.density = 1.0f;

bookfd.restitution = 0.3f;

Finally, we create a body pointed to by pBook, tell the Game Object pointed
to by pGameObject about it by calling its SetPhysicsBody function, and
we’re done.

b2Body* pBook = g_b2dPhysicsWorld .CreateBody (&bd);

pGameObject -> SetPhysicsBody (pBook);

pBook ->CreateFixture (& bookfd);

} // CreateBook

Function CreateBall is similar, except it uses a b2CircleShape shape
called ballshape. In place of the SetAsBox function call used in function
CreateBook, we set ballshape’s m_radius field directly. The image in
ball.png in the Images folder is 32×32, which means that the ball has di-
ameter 32 and radius 16 in Render World. Therefore, ballshape.m_radius
is set to RW2PW(16). One may observe that given that the radius of a circle
is a kind of half-width-ish thing, the use of half-width and half-height in
SetAsBox now begins to make sense. It’s probably that way for consistency.

b2CircleShape ballshape ;

ballshape .m_radius = RW2PW (16);

I’ll leave you to read the rest of function CreateBall in NonPlayerOb

jects.cpp yourself if you feel you need to. There’s nothing exciting in it,
but if you must, you must, I suppose. Getting back to function Keyboard

Handler in MyGame.cpp for a moment, there’s some fancy code to make
the balls and books appear in various places along the top of the screen,
but I won’t bore you with the details. In response to VK_BACK, we call
the Object World’s clear function to restart the game. More about that
function in a moment.

5.4 • Our First Box2D App 127

Descending from the highest level of the code in MyGame.cpp to the
lowest level of the code for the lowly Game Object, we see in object.h

that CGameObject retains only its m_nObjectType member variable and
its constructor and destructor. Everything else has vanished. In return,
it gets a b2Body pointer m_pBody and a SetPhysicsBody function that
should be familiar from the description of function CreateBook a couple of
paragraphs ago. The latter function sets the former member variable to the
value of its parameter. Object.cpp should once again hold no surprises
for you, with the one obvious exception being that its destructor calls
g_b2dPhysicsWorld’s DestroyBody function to release the Physics body
pointed to by m_pBody.

CGameObject ::~ CGameObject (){

if(m_pBody)

g_b2dPhysicsWorld . DestroyBody (m_pBody);

} // destructor

Moving up a level from the Game Object to the Object Manager, we
see in ObjectManager.cpp that CObjectManager’s draw function used to
have code to get the object’s position from the Game Object directly like
this:

if(p){

D3DXVECTOR2 v = p-> m_vPosition ;

g_cRenderWorld .draw(p->m_nObjectType , v.x, v.y);

} //if

Now, it has to get the object’s position and orientation from the Physics
World instead, as follows:

if(p){

float a = p->m_pBody ->GetAngle ();

b2Vec2 v = p->m_pBody ->GetPosition ();

g_cRenderWorld .draw(p->m_nObjectType ,

PW2RW(v.x), PW2RW(v.y), a);

} //if

The Object Manager’s move function is now only a single line of code.
Instead of doing any kind of physics calculations itself, it asks the Physics
World to perform a simulation step for it. What could be easier?

void CObjectManager :: move (){

g_b2dPhysicsWorld .Step (1.0f/60.0f, 6, 2);

} // move

128 5 • Getting Started

Key Ball Mass Ball Rest. Book Mass Book Rest.

1 high high high high
2 high high high low
3 high high low high
4 high high low low
5 high low high high
6 high low high low
7 high low low high
8 high low low low
9 low high high high
0 low high high low
q low high low high
w low high low low
e low low high high
r low low high low
t low low low high
y low low low low

Table 5.1 • Keyboard bindings for Exercise 7.

• 5.5 Exercises
1. Follow the instructions in Section 5.1 to download and set up Box2D.

2. Download the code for the Box2D demo described in Section 5.4. Get
it to compile. Those of you who installed Box2D without reading the
instructions in Exercise 1 might want to go back and do it properly.6

3. Are 720 objects visible in Figure 5.11? If not, why not?

4. Assuming that you’ve completed Exercises 1 and 2 correctly, modify
the code to generate both big books and small books.

5. In function CreateBook from file NonPlayerObjects.cpp, change
the box size by replacing SetAsBox(RW2PW(27), RW2PW(32)) with
SetAsBox(RW2PW(54), RW2PW(64)). Run your code, and take a
screen shot after holding down the space bar for a while, then waiting
for the objects to stop moving. Describe what happened and why.

6. If you keep increasing the force of gravity in this chapter’s demo code,
something very strange will happen. Determine what that strange
behavior is, and find the smallest value at which the strange behavior
seems to begin.

7. Experiment with changing the mass and restitution settings of the
balls and books. Try, for example, creating books with high mass

...........................
6Do not message or email me asking how to get the demo to compile. Read. Think.

Read. Think again. If you are totally lost then you might be tempted to message or
email me in spite of this warning. Fair enough. But prepare to be mocked. It’s small
enough punishment for not being able to RTFM.

5.5 • Exercises 129

and high restitution, low mass and high restitution, high mass and
low restitution, and low mass and low restitution. Now try each of
the 16 combinations with the two kinds of objects. Tie them to the
keyboard as shown in Table 5.1. Which do you prefer? Justify your
answer.

8. Experiment with the parameters in the call to g_b2dPhysicsWorld

.Step in the Object Manager’s move function in ObjectManager.cpp.
What happens if you change the first parameter? The second param-
eter? The third parameter? Try both higher values and lower values.

This page intentionally left blankThis page intentionally left blank

6
A Tale of Three Modules

Box2D has three modules, the Common Module, which contains some low-
level code and data structures, the Collision Module, which contains code
and data structures for collision detection and response, and the Dynamics
Module, which contains code and data structures for the Physics World.
The body of this chapter is divided into three sections, one per module.
Section 6.1 will delve fairly deeply into the Common Module, since (in
addition to its use throughout Box2D) it is a useful toolkit that can save
you lots of programming time reinventing the wheel. Section 6.3 contains
an introduction to the Collision Module at a deep enough level for you to
get started writing a game. More details are available later in Chapter 8 if
you need them. Section 6.5 introduces the Dynamics Module.

The Box2D source-code folder contains, among other things, three fold-
ers corresponding to the three modules, conveniently named Common, Colli
sion, and Dynamics. After poking about for a while, you will find that the
overall structure of the files and folders in Box2D is as shown in Figure 6.1.
Fortunately, there is more structure here than meets the eye. Each mod-
ule is made up of various components, as illustrated in Figure 6.2. This
chapter and the next one will focus on the light gray components.

• 6.1 The Common Module
The Common Module contains code for some low-level things such as mem-
ory allocation and a math library. My first thought when I saw this was
“Oh no! Not another math library!” but there is a good reason for this
one. Box2D is designed to be cross-platform, spanning devices that are

131

132 6 • A Tale of Three Modules

Figure 6.1 • The Box2D file structure. The boxes represent folders.

blindingly fast and provide a lot of hardware support (such as gamer PCs)
to others that are less so, but are small and portable (cell phones). Writing
your code to use the structures and functions that Box2D provides will
enable your application to be cross-platform too.

Code and header files for the Common Module are found in folder Com-
mon. Table 6.1 lists them in three groups. The first group consists of files
that are likely of no interest to you.

6.1 • The Common Module 133

Math Functions

Figure 6.2 • The three Box2D modules with their dependencies and components.
The darker components are the ones you probably don’t need to know much about
in order to make a game.

File Description

b2Draw.h, cpp Drawing tools for demos
b2BlockAllocator.h, cpp For internal use
b2GrowableStack.h, cpp For internal use
b2StackAllocator.h, cpp For internal use

b2Settings.h, cpp Constant definitions
b2Timer.h, cpp Timer

b2Math.h, cpp Math library

Table 6.1 • Common Module files.

134 6 • A Tale of Three Modules

Box2D Type Typedeffed To

int8 signed char

int16 signed short

int32 signed int

uint8 unsigned char

uint16 unsigned short

uint32 unsigned int

float32 float

float64 double

Table 6.2 • Box2D scalar types.

• 6.1.1 Files Best Left Undisturbed

Files b2Draw.h and b2Draw.cpp contain the line-drawing tools that are
used in the testbed code demos that come with Box2D. They are great
for proof-of-concept, but you will likely want to use your own rendering
tools, as I have done in this book. The remaining files in this group are for
internal use by Box2D.

The second group consists of files that will be of some interest to you.

• 6.1.2 Files of Limited Interest

Files b2Settings.h and b2Settings.cpp largely consist of settings of all
kinds. Most of them are best left alone, but some of them are relevant
during tuning to make sure that your simulated physics looks and acts just
right. For the curious, b2Settings.h is where you’ll find definitions for
the Box2D scalar types such as float32 and int32. These are listed in
Table 6.2.

Files b2Timer.h and b2Timer.cpp contain the Box2D timer class
b2Timer. This class differs from the CTimer class in our codebase, used in
Chapter 3 in that it is less functional but cross-platform.

• 6.2 The Math Library
The third group of files in the Common Module should be of great interest
to you. Files b2Math.h and b2Math.cpp contain useful math structures
such as vectors and matrices and code for operations on them. All of
the functions are declared inline for speed. Table 6.3 lists some useful

Function Description
uint32 b2NextPowerOfTwo(uint32); Rounds up to next power of 2
bool b2IsPowerOfTwo(uint32); true if a power of 2
float32 b2InvSqrt(float32); Approximate but fast 1/sqrt

Table 6.3 • Scalar functions.

6.2 • The Math Library 135

scalar functions. We’ll spend most of this section going over them. We
start with some useful1 functions shown in Table 6.3. These functions deal
with scalars, that is, things that are not vectors or matrices. Function
b2NextPowerOfTwo rounds a number up to the next power of two, while
b2IsPowerOfTwo returns true when its parameter is a power of 2 exactly.
Function b2InvSqrt is a fast approximate inverse square root. That is,
given n, it computes something close to 1/

√
n, a function that often takes

too long to compute exactly.
b2Vec2 is a 2D vector structure with member variables float32 x, y;

and the functions shown in Table 6.4. Two of those functions, IsValid()
and Skew(), deserve further comment. Function IsValid() returns true
if b2IsValid(x) && b2IsValid(y), where

inline bool b2IsValid (float32 x){

if(x != x)return false; // NaN

float32 infinity =

std :: numeric_limits <float32 >:: infinity ();

return -infinity < x && x < infinity ;

}

Suppose b2Vec2 v represents the vector �v. Then function v.Skew() returns
the skew vector �s such that there exists a vector �t such that �s · �t = �v × �t.
That is, if �v = (x, y), then �s = (−y, x).

b2Vec3 is a 3D vector structure (although I will confess that the com-
ments call it a “2D column vector with 3 elements”) with member variables
float32 x, y, z; and the functions shown in Table 6.5. Note that it lacks
many of the functions found in b2Vec2 (compare with Table 6.4).

b2Mat22 is a 2 × 2 matrix structure with member variables b2Vec2

ex, ey; and the functions shown in Table 6.6. The 2D vectors ex and ey

store the columns of the matrix as follows:

[ex, ey] =

[
ex.x ey.x
ex.y ey.y

]
.

Its GetInverse() function computes the multiplicative inverse in the usual
way: [

a b
c d

]−1

=
1

ad− bc

[
d −b
−c a

]
.

...........................
1I admit that they look as if no sane person could ever find a rational use for them

aside from printing them and using them as liner for their hamster cage. This is perfectly
true until they actually need them, in which case they swear by them. Please bear with
me. I am not completely insane.

136 6 • A Tale of Three Modules

Function Description

b2Vec2(); Constructor
b2Vec2(float32, float32); Constructor using coordinates
void SetZero(); Set to zero
void Set(float32, float32); Set to value
b2Vec2 operator -() const; Negate
float32 operator () (int32); Read from indexed element
float32& operator () (int32); Write to indexed element
void operator += (const b2Vec2&); Add to
void operator -= (const b2Vec2&); Subtract from
void operator *= (float32); Multiply by scalar
float32 Length(); Vector norm
float32 LengthSquared(); Use to avoid square root
float32 Normalize(); Vector normalize
bool IsValid(); Is a valid vector
b2Vec2 Skew(); Skew vector

Table 6.4 • b2Vec2 functions.

Function Description

b2Vec3(); Constructor
b2Vec3(float32, float32, float32); Constructor using coordinates
void SetZero(); Set to zero
void Set(float32, float32, float32); Set to value
b2Vec3 operator -() const; Negate
void operator += (const b2Vec3&); Add to
void operator -= (const b2Vec3&); Subtract from
void operator *= (float32); Multiply by scalar

Table 6.5 • b2Vec3 functions.

Function Description

b2Mat22(); Constructor
b2Mat22(const b2Vec2&, const b2Vec2&); Construct from columns
b2Mat22(float32, float32, float32, Construct from scalars
float32);

void Set(const b2Vec2&, const b2Vec2&); Initialize from columns
void SetIdentity(); Set to identity matrix
void SetZero(); Set to zero matrix
b2Mat22 GetInverse() const; Return inverse
b2Vec2 Solve(const b2Vec2&) const; Solve Ax = u

Table 6.6 • b2Mat22 functions.

6.2 • The Math Library 137

The code looks like the following. Notice that it returns the zero matrix if
the matrix is singular.2

b2Mat22 GetInverse () const{

float32 a = ex.x, b = ey.x, c = ex.y, d = ey.y;

b2Mat22 B;

float32 det = a*d - b*c;

if(det != 0.0f) det = 1.0f/det;

B.ex.x = det*d; B.ey.x = -det*b;

B.ex.y = -det*c; B.ey.y = det*a;

return B;

}

Suppose we have a 2× 2 matrix M and we want to compute M−1 so that
we can use it to multiply M−1�u for some 2D vector �u. Using GetInverse()
followed by matrix-vector multiplication would cost us six scalar multipli-
cations, a scalar addition,3 and a scalar division for the GetInverse, four
scalar multiplications and two scalar additions for the matrix-vector multi-
plication, a total of ten multiplications, three additions, and a division. It’s
slightly cheaper to instead solve for the vector �v such that M�v = �u. The
following code does this using eight multiplications, three additions, and a
division, which saves two multiplications. Notice that this saves time only
if we have only one vector �u that we need to multiply by M−1. If there
is more than one, it’s cheaper to compute M−1 once using GetInverse()

and reuse it.

b2Vec2 Solve(const b2Vec2& u) const{

float32 a = ex.x, b = ey.x, c = ex.y, d = ey.y;

float32 det = a*d - b*c;

if(det != 0.0f) det = 1.0f/det;

b2Vec2 v;

v.x = det * (d * u.x - b * u.y);

v.y = det * (a * u.y - c * u.x);

return v;

}

b2Mat33 is a 3×3 matrix structure with member variables b2Vec3 ex,

ey, ez; and the functions shown in Table 6.7. Note that it lacks many of
the functions found in b2Mat22 (compare with Table 6.6). The 3D vectors

...........................
2I hope that you recall from your linear algebra class that singular means “not

invertible,” which means determinant zero.
3Well OK, a subtraction. Same difference.

138 6 • A Tale of Three Modules

Function Description

b2Mat33(); Constructor
b2Mat33(const b2Vec3&, const b2Vec3&, Construct from columns

const b2Vec3&);

void SetZero(); Set to zero matrix
b2Vec3 Solve33(const b2Vec3&) const; Solve Ax = b
b2Vec2 Solve22(const b2Vec2&) const; Same for upper 2× 2
void GetInverse22(b2Mat33*) const; Inverse of upper 2× 2
void GetSymInverse33(b2Mat33*) const; Symmetric inverse

Table 6.7 • b2Mat33 functions.

Function Description

b2Rot(); Constructor
explicit b2Rot(float32); Initialize from an angle
void Set(float32); Set from an angle
void SetIdentity(); Set to identity rotation
float32 GetAngle() const; Get the angle
b2Vec2 GetXAxis() const; Get the x-axis
b2Vec2 GetYAxis() const; Get the y-axis

Table 6.8 • Rotation matrix b2Rot functions.

ex, ey, and ez store the columns of the matrix as follows:

[ex, ey, ez] =

⎡
⎣ ex.x ey.x ez.x

ex.y ey.y ez.y
ex.z ey.z ez.z

⎤
⎦ .

b2Mat33 has two functions that correspond to b2Mat22’s Solve. They
are Solve33, which is the expected 3D version of b2Mat22::Solve, and
Solve22, which is the same as b2Mat22::Solve performed on the top-
left 2 × 2 submatrix of the b2Mat33. Also, b2Mat33 has two functions
that correspond to b2Mat22’s GetInverse(). GetInverse22 is the same
as b2Mat22’s GetInverse() performed on the top-left 2 × 2 submatrix of
the b2Mat33, and GetSymInverse33 computes the 3× 3 inverse when the
matrix is symmetrical, which it will often be for many physics applications.4

Again, both return the zero matrix if singular.

b2Rot is a 2×2 rotation matrix structure with member variables float
32 s, c; and the functions shown in Table 6.8. Member variables s and
c contain, respectively, the sine and the cosine of the rotation angle. This

...........................
4It does no checking for symmetry; If the matrix isn’t symmetric, it simply returns

the wrong value.

6.3 • The Collision Module 139

Function Description

b2Transform(); Constructor
b2Transform(const b2Vec2&, Init. from posn & rotn
const b2Rot&);

void SetIdentity(); Set to identity transform
void Set(const b2Vec2&, float32); Set from posn & angle

Table 6.9 • b2Transform functions. A transformation contains both translation
and rotation.

is because the 2× 2 matrix for rotating θ radians in 2D is5[
cos θ sin θ
−sin θ cos θ

]
.

The two functions most worth commenting on are GetXAxis() and GetY

Axis(), which return the basis vectors6 of the space spanned by the matrix,
the unit vectors (1, 0) and (0, 1) rotated by angle θ.

b2Transform is a 2×2 transformation structure with member variables
b2Vec2 p and b2Rot q. The former represents a translation, and the latter
a rotation. b2Transform functions are shown in Table 6.9.

Finally, the Common Module contains some useful math functions listed
in Tables 6.10 and 6.11 and a class b2Sweep that is used internally for
collision response.

• 6.3 The Collision Module
The Collision Module is contained in folder Collision. It includes defi-
nitions for shapes and functions that operate on them (see Section 6.4),
broad-phase collision detection (Section 6.3.2), and a data structure called
a dynamic tree (Section 8.4). Dynamic trees use the concept of an axially
aligned bounding box, which we will cover first in Section 8.3. Normally,
you won’t need to interact with the broad-phase collision-detection code
directly, but let’s take a quick look under the hood to familiarize ourselves
with what’s going on there. Table 6.12 contains a list of the Collision
Module files in folder Collision.

• 6.3.1 Contact Manifolds

A contact manifold is a discrete approximation to a continuous region of
contact. When a circle collides with a polygon or another circle, they have
...........................

5See Section 5.1.1 of [Dunn and Parberry 11] if you’re rusty.
6Basis vectors are useful for many things, including visualization of the effect of a

matrix, see Section 3.3.3 of [Dunn and Parberry 11].

140 6 • A Tale of Three Modules

float32 b2Dot(const b2Vec2&, const b2Vec2&);

float32 b2Dot(const b2Vec3&, const b2Vec3&);

b2Vec2 b2Abs(const b2Vec2&);

float32 b2Cross(const b2Vec2&, const b2Vec2&);

b2Vec2 b2Cross(const b2Vec2&, float32);

b2Vec2 b2Cross(float32, const b2Vec2&);

b2Vec3 b2Cross(const b2Vec3&, const b2Vec3&);

b2Vec2 b2Min(const b2Vec2&, const b2Vec2&);

b2Vec2 b2Max(const b2Vec2&, const b2Vec2&);

b2Vec2 b2Clamp(const b2Vec2&, const b2Vec2&,

const b2Vec2&);
b2Vec2 b2Mul(const b2Mat22&, const b2Vec2&);

b2Vec3 b2Mul(const b2Mat33&, const b2Vec3&);

b2Vec2 b2MulT(const b2Mat22&, const b2Vec2&);

b2Vec2 b2Mul22(const b2Mat33& A, const b2Vec2& v);

b2Vec2 b2Mul(const b2Rot&, const b2Vec2&);

b2Vec2 b2MulT(const b2Rot&, const b2Vec2&);

b2Vec2 b2Mul(const b2Transform&, const b2Vec2&);

b2Vec2 b2MulT(const b2Transform&, const b2Vec2&);

b2Vec2 operator*(float32, const b2Vec2&);

b2Vec3 operator*(float32, const b2Vec3&);

b2Vec2 operator+(const b2Vec2&, const b2Vec2&);

b2Vec3 operator+(const b2Vec3&, const b2Vec3&);

b2Vec2 operator-(const b2Vec2&, const b2Vec2&);

b2Vec2 operator-(const b2Vec3&, const b2Vec3&);

bool operator==(const b2Vec2&, const b2Vec2&);

float32 b2Distance(const b2Vec2&, const b2Vec2&);

float32 b2DistanceSquared(const b2Vec2&, const b2Vec2&);

Table 6.10 • Useful vector math functions.

b2Mat22 b2Abs(const b2Mat22&);

b2Mat22 operator+(const b2Mat22&, const b2Mat22&);

b2Mat22 b2Mul(const b2Mat22&, const b2Mat22&);

b2Mat22 b2MulT(const b2Mat22&, const b2Mat22&);

b2Rot b2Mul(const b2Rot&, const b2Rot&);

b2Rot b2MulT(const b2Rot&, const b2Rot&);

b2Transform b2Mul(const b2Transform&,

const b2Transform&);

b2Transform b2MulT(const b2Transform&,

const b2Transform&);

Table 6.11 • Useful matrix math functions.

6.3 • The Collision Module 141

File Description

b2BroadPhase.h, cpp Broad-phase collision detection
b2Collision.h, cpp Contact points, distance, and TOI queries

b2CollideCircle.cpp Contact manifolds for circles
b2CollideEdge.cpp Contact manifolds for edges
b2CollidePolygon.cpp Contact manifolds for polygons

b2Distance.h, cpp Distance proxies
b2TimeOfImpact.h, cpp Time of first impact, TOI

b2DynamicTree.h, cpp Dynamic tree data structure

Table 6.12 • Collision Module files.

a single point of contact (called a contact point in Box2D), as shown in the
first two collisions on the left of Figure 6.3. When two polygons collide,
they may have one or two contact points, as shown in the last two collisions
on the right of Figure 6.3. The contact normal is a unit vector that points
from one shape to the other. Box2D makes the direction of this vector from
the first shape to the second shape, where the terms “first” and “second”
refer to the order in which they are stored. Contact normals are also shown
in Figure 6.3.

If you go diving into the collision-detection code, you will undoubtedly
see arrays and for loops making use of the value b2_maxManifoldPoints as
the maximum number of contact points in a contact manifold, which may
delude you into thinking that Box2D manifolds can have an arbitrary num-
ber of contact points. You will be disappointed to find that b2settings.h
contains the following definition with a comment that says “Do not change
this value”:

#define b2_maxManifoldPoints 2

Box2D provides a simple contact manifold class b2Manifold, but while
the comments state that it is strictly for internal use, it’s often necessary
to drill down into it if you want to do anything sophisticated with colli-
sion response. For example, while b2Manifold stores things like contact
points in local coordinate space, programmers will more often than not
need them in world space. Box2D provides a b2WorldManifold struc-
ture whose Initialize function will let you translate a b2Manifold from
local coordinates to world coordinates. The logic behind this is proba-
bly that b2Manifolds are recomputed often and therefore need to be fast,
whereas b2WorldManifold is slower and therefore should be recomputed
only when explicitly requested by the programmer. Keep in mind that
while b2WorldManifold knows things like the world-space coordinates of
the contact points, the actual number of contact points (be it one or two)

142 6 • A Tale of Three Modules

Figure 6.3 • A contact manifold consists of a contact normal and at most two
contact points. From left to right, the contact manifolds for two circles, a circle
and a polygon, two polygons with a single contact point, and two polygons with
two contact points.

must be gotten from the corresponding b2Manifold. This means that you
really can’t avoid having to know at least something about the forbidden
and mysterious b2Manifold structure. Since you don’t need to know any
more than this when writing your first game, we should postpone more
details to Section 8.1.

• 6.3.2 Broad-Phase Collision Detection

Box2D uses the term narrow-phase collision detection to denote collision
response between two objects, and the term broad-phase collision detection
to denote collision response between all objects. Suppose our game has
n objects. Algorithm 1 shows the obvious brute-force approach to broad-
phase collision detection.

Algorithm 1 • Broad-phase collision detection

for 0 ≤ i < n do
for i < j < n do
Perform narrow-phase collision between object i and object j

end for
end for

Algorithm 1 should be familiar from the CObjectManager collision code
that we examined in Section 3.2. The CObjectManager’s move() function
performed the outer loop on i, calling function CollisionResponse to per-
form the second loop and its body. As we did there, we compute collision
response for both colliding objects together, and therefore need j, the in-
dex of the second loop, to be larger than i, the index of the first loop.
The number of times that narrow-phase collision detection is performed is,

6.4 • Shapes 143

therefore,

n−1∑
i=0

n−1∑
j=i+1

1 =

n−1∑
i=0

n− i− 1

=

n−1∑
i=0

n−
n−1∑
i=0

i−
n−1∑
i=0

1

= n2 − (n− 1)n/2− n+ 1

= n(n− 1)/2− 1.

This is quadratic in n, yet most of the narrow-phase collision tests will fail,
because in most games, most of the time, most objects aren’t colliding with
a lot of other objects. It’s a waste of time testing for quadratically many
possible collision pairs when one might reasonably expect to find that at
most a linear number of them are actual collisions. Box2D’s b2BroadPhase
class reduces this load by using a dynamic-tree data structure to organize
the objects in such a way that we can iterate through collision pairs in time
proportional to the number of collisions. Algorithm 1 is then replaced by
Algorithm 2.

Algorithm 2 • Broad-phase collision detection with a dynamic tree

for each pair of objects i and j that the dynamic tree says may collide
do
Perform narrow-phase collision between object i and object j

end for

• 6.4 Shapes
Box2D shapes are contained in a folder called Shapes in the Collision Mod-
ule folder Collision. There, you will find the files listed in Table 6.13. File
b2Shape.h contains the definition for the b2Shape base class, which has
member functions to

• test a point for overlap with the shape,

• perform a ray cast against the shape,

• compute the shape’s AABB,

• compute the mass properties of the shape.

The b2Shape base class has member variables for

• type (e.g., circle, polygon),

• radius.

144 6 • A Tale of Three Modules

File Shape Class Covered in

b2Shape.h, cpp b2Shape Section 6.4
b2CircleShape.h, cpp b2CircleShape Section 6.4.1
b2PolygonShape.h, cpp b2PolygonShape Section 6.4.1
b2EdgeShape.h, cpp b2EdgeShape Section 6.4.2
b2ChainShape.h, cpp b2ChainShape Section 6.4.2

Table 6.13 • The shape files in folder Shape.

• 6.4.1 Circles, Polygons, and Boxes

b2CircleShapes are derived from b2Shape and are defined in files b2Circle
Shape.h and b2CircleShape.cpp. Circle shapes have a position and ra-
dius. Circles are solid. You cannot make a hollow circle. However, you can
fake it with a chain of line segments using polygon shapes.

b2CircleShape circle;

circle.m_p.Set(2.0f, 3.0f); // position

circle.m_radius = 0.5f; // radius

b2PolygonShapes are derived from b2Shape and are defined in files
b2PolygonShape.h and b2PolygonShape.cpp. Polygon shapes must be
convex (meaning that all line segments connecting two points in the inte-
rior do not cross any edge, see Figure 6.4) and must have at least three
vertices. Like circles, they are solid, not hollow. Create polygons with a
counterclockwise winding (CCW) order. That is, vertices must be listed in
counterclockwise order as shown in Figure 6.5.

Figure 6.4 • The polygon on the left is convex. The one on the right is concave
since the dotted line connects two points in the interior of the polygon and crosses
two edges.

6.4 • Shapes 145

Figure 6.5 • Polygon vertices must be listed in counterclockwise order.

Although polygon member variables are public, it’s best to use ini-
tialization functions to create polygons since the initialization functions
automatically perform housekeeping tasks such as validation and creating
normals, tasks that you would otherwise have to remember to do yourself.
Polygon shapes are created by passing in a vertex array. The maximum
size of the array is controlled by b2_maxPolygonVertices, which has a
default value of 8. The following code creates a triangle with vertices at
(0, 0), (1, 0), and (0, 1).

b2Vec2 vertices [3];

vertices [0]. Set(0.0f, 0.0f);

vertices [1]. Set(1.0f, 0.0f);

vertices [2]. Set(0.0f, 1.0f);

int32 count = 3;

b2PolygonShape polygon ;

polygon .Set(vertices , count);

The polygon shape has some custom initialization functions to create boxes.

void SetAsBox (float32 hx , float32 hy);

void SetAsBox (float32 hx , float32 hy ,

const b2Vec2& center , float32 angle);

Polygons inherit a value called the radius from b2Shape. The radius is
used to create a thin buffer area called the skin around them, as shown

146 6 • A Tale of Three Modules

Figure 6.6 • Polygon skin shown as a dotted line (left). Stacked polygons are
separated by their skins (right) in Physics World.

at left in Figure 6.6. The skin is used when stacking to keep polygons
slightly separated and thus allow continuous collision to work against the
core polygon. The polygon skin helps prevent tunneling by keeping the
polygons separated, as shown at right in Figure 6.6.

• 6.4.2 Edges and Chains

Edge shapes are line segments. b2EdgeShapes are derived from b2Shape

and are defined in files b2EdgeShape.h and b2EdgeShape.cpp. These are
provided to assist in making a freeform static environment for your game.
A major limitation of edge shapes is that they can collide with circles and
polygons but not with each other. The collision algorithms used by Box2D
require that at least one of two colliding shapes have volume. Edge shapes
have no volume, so edge-edge collision is not possible. Edge shapes are
created as follows:

b2Vec2 v1 (0.0f, 0.0f);

b2Vec2 v2 (1.0f, 0.0f);

b2EdgeShape edge;

edge.Set(v1, v2);

Suppose we connect some edge shapes end-to-end, and a polygon slides
along it. A ghost collision is caused when the polygon collides with an
internal vertex, generating an internal collision normal. Consider Figure 6.7
in which a box is sliding to the right on two joined edges. A ghost collision
occurs when the box hits the vertex that joins them, If Edge 1 did not
exist, this collision would seem fine. With Edge 1 present, the internal

6.4 • Shapes 147

Figure 6.7 • A ghost collision is created between the box and the vertex joining
Edge 1 to Edge 2.

collision is unnecessary and may cause spurious behavior if processed like
a normal collision. If Edge 1 weren’t present, the box would bounce off the
vertex at the end of Edge 2. With Edge 1 present, the box should behave
as if the vertex weren’t there. The edge shape provides a mechanism for
eliminating ghost collisions by storing a ghost vertex at each end, as shown
in Figure 6.8. Box2D uses these ghost vertices to prevent internal collisions.
For example, suppose we start with the following four vectors:

b2Vec2 v0 (1.7f, 0.0f); // ghost

b2Vec2 v1 (1.0f, 0.25f); //real

b2Vec2 v2 (0.0f, 0.0f); //real

b2Vec2 v3(-1.7f, 0.4f); // ghost

The following creates an edge between v1 and v2 with ghost vertices v0

and v3.

b2EdgeShape edge;

edge.Set(v1, v2); //real

edge . m_hasVertex0 = true; // ghost

edge . m_hasVertex3 = true; // ghost

edge . m_vertex0 = v0; // ghost

edge . m_vertex3 = v3; // ghost

Figure 6.8 • v0 and v3 are ghost vertices.

148 6 • A Tale of Three Modules

A chain is an open series of connected edges. Box2D provides a b2Chain

Shape derived from b2Shape, defined in files b2ChainShape.h and b2Chain

Shape.cpp. To create a chain, start with an array of b2Vec2s.

b2Vec2 vs [4];

vs [0]. Set (1.7f, 0.0f);

vs [1]. Set (1.0f, 0.25f);

vs [2]. Set (0.0f, 0.0f);

vs [3]. Set(-1.7f, 0.4f);

The following creates a chain of edges from v[0] to v[1] to v[2] to v[3].

b2ChainShape chain;

chain. CreateChain (vs , 4);

Connect chains with ghost vertices. There are more functions to create
loops. Self-collision of chain shapes may or may not work. Each edge in
the chain is treated as a child shape and can be accessed by index.

for(int32 i=0; i<chain.GetChildCount (); i++){

b2EdgeShape edge;

chain.GetChildEdge (&edge , i);

...

} //for

• 6.5 The Dynamics Module
The Dynamics Module provides the Physics World (Section 6.5.1) and the
things that appear in it, for example, fixtures (Section 6.5.2), bodies (Sec-
tion 6.5.3), contacts and joints (Section 6.6).

• 6.5.1 The Physics World

b2World is Box2D’s implementation of the Physics World that we saw in
Figure 5.3. As shown in Figure 6.9, the Box2D Physics World consists of
objects such as bodies and joints, plus the code for managing them. We
begin by defining a direction and a magnitude for the force of gravity as
a 2D vector; then, we provide that vector as a parameter to the b2World

constructor.

b2Vec2 gravity (-9.8f);

b2World g_b2dPhysicsWorld (gravity);

6.5 • The Dynamics Module 149

Figure 6.9 • The Physics World in Box2D.

• 6.5.2 Fixtures

As I mentioned above, a fixture consists of a shape plus some additional
physical coefficients such as density, friction, and restitution. Multiple
fixtures can be attached to a body. Fixtures on the same body never collide
with each other. Fixtures are defined using a b2FixtureDef structure,
which is defined as follows:

struct b2FixtureDef {

b2FixtureDef ();

const b2Shape * shape;

void* userData ;

float32 friction ;

float32 restitution ;

float32 density;

bool isSensor ;

b2Filter filter;

};

The first six members of b2FixtureDef are fairly straightforward. Let
me pick out a few of them for comment. The constructor zeroes out the
member variables with the exception of friction, which is set to a default
value of 0.2f, and filter, which has its own constructor. userData can
be used for custom user data, remembering that we can typecast it from
void* later. The coefficient of friction and the restitution are real
numbers that are usually, but not necessarily, in the range [0, 1]. The last
two members deal with sensors and collision filtering, respectively, which
require a little more explanation.

Sometimes, game logic needs to know when two fixtures overlap, yet
there should be no collision response. This is done by using sensors. You

150 6 • A Tale of Three Modules

can flag any fixture as being a sensor. Sensors may be static or dynamic.
Remember that you may have multiple fixtures per body. These may be
any mix of sensors and solid fixtures.

Collision filtering allows you to prevent unwanted collision between
fixtures. Not only does it prevent them from happening, it prevents them
from taking up processor time. Box2D supports such collision filtering
using categories and groups.

Fixture definitions have two 16-bit words of category flags: category

Bits, which indicate the categories the fixture is in, and maskBits, which
indicate the categories that it can collide with. The next block of code de-
clares two fixture definitions, pcFrDef for the player character and npcFrDef
for a nonplayer character, and sets their collision-filter categories.

b2FixtureDef pcFrDef , npcFrDef ;

pcFrDef .filter. categoryBits = 0x0002;

npcFxtrDef .filter. categoryBits = 0x0004;

pcFrDef .filter.maskBits = 0x0004;

npcFrDef .filter.maskBits = 0x0002;

After the declaration, the next two lines of code set the categories that
the fixtures are in. The player character fixture is in Category 2, while
the nonplayer character fixture is in Category 3 (remember that to set
bit 3, we need to set the category bits to 0000000000000100 = 410). The
next two lines of code set the categories that the fixtures can collide with.
The player character can collide with fixture Category 4 (the nonplayer
character fixture), while the nonplayer character fixture can collide with
Category 2 (the player character fixture).

Collision groups are indicated by an integer groupIndex. You can have
all fixtures with the same group index always collide (positive groupIndex)
or never collide (negative groupIndex). Group indices are usually used for
things that are somehow related, like the parts of a game object. In the
following example, fixtures f1 and f2 always collide, but f3 and f4 never
collide.

b2FixtureDef f1 , f2 , f3 , f4;

f1.filter.groupIndex = 42;

f2.filter.groupIndex = 42;

f3.filter.groupIndex = -7;

f4.filter.groupIndex = -7;

Group filtering has higher precedence than category filtering.

6.5 • The Dynamics Module 151

• 6.5.3 Bodies

A body is really only a carrier for a collection of fixtures. Box2D has three
distinct types of body: static, kinematic, and dynamic. Static bodies do
not move automatically in the Physics World, although the programmer
can move them manually. Fixtures on a static body can only collide with
fixtures on a dynamic body. Kinematic bodies move but do not respond to
forces, so they have velocity but no acceleration. Fixtures on a kinematic
body can only collide with fixtures on a dynamic body. Dynamic bodies
are fully simulated: they have velocity, they respond to forces, and their
fixtures collide with fixtures on bodies of all three types. By default, all
created bodies are static unless you explicitly ask the Physics World to
create them as dynamic bodies by setting the appropriate parameter.7

It takes four steps to create a body. The first step is to create a
b2BodyDef structure that you will use to define the properties of your
body, such as position.

b2BodyDef myboxBodyDef ;

myboxBodyDef .position .Set (0.0f, -100.0f);

If you want your box to be dynamic or kinematic rather than static,
simply add the property b2_dynamicBody or b2_kinematicBody to your
b2BodyDef structure’s type field.

myboxBodyDef .type = b2_dynamicBody ;

Step 2 is to ask the Physics World object (Section 6.5.1) to create a body
described by your b2BodyDef structure. The body will have no fixtures at
this point. You will have to attach them later.

b2Body* myboxBody =

g_b2dPhysicsWorld . CreateBody (& myboxBodyDef);

Step 3 is to define fixtures (Section 6.5.2) with properties such as shape
(Section 6.4).

b2PolygonShape myboxShape ;

myboxShape .SetAsBox (50.0f, 10.0f);

Finally, Step 4 is to attach fixtures on the body.
...........................

7This means that if your bodies fail to move as expected, the first thing you should
check is whether you remembered to make them dynamic.

152 6 • A Tale of Three Modules

myboxBody ->CreateFixture (& myboxShape , 0.0f);

The second parameter is the shape density in kg/m2. Although density
is not used in static bodies, it’s probably a good idea to set it to zero
to remind yourself of this fact. Dynamic bodies usually have more fixtures
besides their shape. We can define a fixture with density 1.0 and coefficient
of friction 0.42 as follows:

b2FixtureDef myfixtureDef ;

myfixtureDef .shape = &myboxShape ;

myfixtureDef .density = 1.0f;

myfixtureDef .friction = 0.42f;

The CreateFixture function is given a pointer to the fixture (containing
the shape and other properties) instead of a pointer to the shape:

myboxBody ->CreateFixture (& myfixtureDef);

This automatically updates the mass of the body from its size and density.
If you add multiple fixtures to a body, each one contributes to the total
mass.

• 6.5.4 The Integrator

The Integrator simulates the physics equation in discrete time. Generally,
physics engines for games like a time step at least as fast as 60 hertz or 1/60
seconds. You can get away with larger time steps, but you will have to be
more careful about setting up your world. A fixed time step means better
convergence, and reproducible results (which is, of course, very important
when debugging). Don’t tie the time step to the render frame rate.

const float32 timeStep = 1.0f/60.0f;

• 6.5.5 The Constraint Solver

The constraint solver solves all the constraints in the simulation one at a
time. It has two phases: In the velocity phase, the solver computes the
impulses necessary for the bodies to move correctly. In the position phase,
the solver adjusts the positions of the bodies to reduce overlap and joint
detachment. A single constraint can be solved perfectly. However, when
we solve one constraint, we slightly disrupt other constraints. As we saw

6.6 • Joints 153

earlier in Section 2.4, we will need to iterate over all constraints a number
of times to get a good solution.

The position phase may exit early if errors are small. The suggested
iteration count for Box2D is 8 for velocity and 3 for position.

const int32 velocityIterations = 8;

const int32 positionIterations = 3;

Note that the time step and the iteration count are completely unre-
lated. An iteration is not a sub-step. One constraint-solver iteration is
a single pass over all the constraints within a time step. You can have
multiple passes over the constraints within a single time step. Here is the
simulation loop that simulates 60 time steps for a total of 1 second of
simulated time.

for(int32 i=0; i<60; i++){

g_b2dPhysicsWorld .Step(timeStep , velocityIterations ,

positionIterations);

b2Vec2 p = myboxBody ->GetPosition ();

float32 a = myboxBody ->GetAngle ();

// render myboxBody at (p.x, p.y) at angle a radians

}

• 6.6 Joints
The Stoners amongst the readers of this book may think otherwise, but
for us the term joint means a constraint used to hold two or more bodies
together. For example, your elbow joint attaches your upper arm to your
lower arm and constrains the angle between them to be concave.

Box2D provides eight joint types8 derived from the generic b2Joint.
Each joint type has a corresponding joint definition derived from b2Joint

Def that specifies various parameters of the joint. To make a joint, you first
describe it with a joint definition structure, then pass the joint definition
to the Physics World’s CreateJoint function, which gives you a pointer to
the new joint in return. The eight joint types and their corresponding joint
definition types are described in Table 6.14. Box2D joint files are contained

...........................
8The sci-fi author Robert Heinlein wrote that there are two artistic ways of lying,

the first of which is “Tell the truth, but not all of it.” I lied to you. Box2D actually has
nine joint types, the ninth of which is the mouse joint. I’m going to ignore it because it
crosses world boundaries.

154 6 • A Tale of Three Modules

Joint Joint Type Joint Definition Type

Distance b2DistanceJoint b2DistanceJointDef

Revolute b2RevoluteJoint b2RevoluteJointDef

Prismatic b2PrismaticJoint b2PrismaticJointDef

Pulley b2PrismaticJoint b2PrismaticJointDef

Gear b2GearJoint b2GearJointDef

Weld b2WeldJoint b2WeldJointDef

Rope b2RopeJoint b2RopeJointDef

Friction b2FrictionJoint b2FrictionJointDef

Table 6.14 • Joints and joint definitions.

File Joint Class

b2DistanceJoint.h,cpp b2DistanceJointDef, b2DistanceJoint
b2FrictionJoint.h,cpp b2FrictionJointDef, b2FrictionJoint
b2GearJoint.h,cpp b2GearJointDef, b2GearJoint
b2Joint.h,cpp b2JointDef, b2Joint
b2MouseJoint.h,cpp b2MouseJointDef, b2MouseJoint
b2PrismaticJoint.h,cpp b2PrismaticJointDef, b2PrismaticJoint
b2PulleyJoint.h,cpp b2PulleyJointDef, b2PulleyJoint
b2RevoluteJoint.h,cpp b2RevoluteJointDef, b2RevoluteJoint
b2RopeJoint.h,cpp b2RopeJointDef, b2RopeJoint
b2WeldJoint.h,cpp b2WeldJointDef, b2WeldJoint
b2WheelJoint.h,cpp b2WheelJointDef, b2WheelJoint

Table 6.15 • The joint files in folder Joints with the classes they contain.

in a folder called Joints in the Dynamics Module folder Dynamics. There
you will find the files in Table 6.15 with their corresponding class names.

Suppose we have created two bodies pointed to by pb2bBody1 and pb2b

Body2 and computed anchor points b2v2Anchor1 and b2v2Anchor2 de-
clared as follows.

b2Body* pb2bBody1 , pb2bBody2 ;

b2Vec2 b2v2Anchor1 , b2v2Anchor2 ;

The next few sections will show how to create the joint definitions for
various types of joints connecting the bodies pointed to by pb2bBody1 and
pb2bBody2 at anchor points b2v2Anchor1 and b2v2Anchor2.

• 6.6.1 Distance Joint

A distance joint fixes the distance between two points on two bodies (see
Figure 6.10). Once you specify the two anchor points in world coordinates,

6.6 • Joints 155

Figure 6.10 • Distance joint.

world-space distance between them is kept fixed during the simulation. The
initialization function assumes that the bodies are already in the correct
position.

b2DistanceJointDef b2djdExample1 ;

djdExample1 .Initialize (pb2bBody1 , pb2bBody2 ,

b2v2Anchor1 , b2v2Anchor2);

The Initialize function used above is a shortcut for specifying the
corresponding member variables directly:

b2DistanceJointDef b2djdExample1 ;

b2djdExample1 .bodyA = pb2bBody1 ;

b2djdExample1 .bodyB = pb2bBody2 ;

b2djdExample1 .anchorPoint = b2v2Anchor1 ;

Distance joints can be made soft, like a spring-damper connection. Soft-
ness is achieved by tuning two constants in the definition, the frequency,
and the damping ratio. The frequency is specified in hertz, or cycles per
second. Typically, the frequency should be less than half the frequency of
the time step (this is related to the Nyquist frequency). The damping ratio
is non-dimensional and is typically between 0 and 1, but can be larger. At 1,
the damping is critical, which means that all oscillations should vanish.

b2djdExample1 .frequencyHz = 10.0f;

b2djdExample1 .dampingRatio = 0.6f;

• 6.6.2 Revolute Joint

The revolute joint forces two bodies to share a common anchor point, also
known as the hinge point (see Figure 6.11). The revolute joint has a single

156 6 • A Tale of Three Modules

Figure 6.11 • Revolute joint. Figure 6.12 • Prismatic joint.

degree of freedom: the relative rotation of the two bodies. This is called the
joint angle. To specify a revolute joint you need to provide two bodies and a
single anchor point in world space. The initialization function assumes that
the bodies are already in the correct position. The following declaration
creates a revolute joint between two bodies at the first body’s center of
mass.

b2RevoluteJointDef b2djdExample2 ;

b2djdExample2 .Initialize (pb2bBody1 , pb2bBody2 ,

b2v2Anchor1);

• 6.6.3 Prismatic Joint

The prismatic joint , often called a slider, allows only linear motion along
an axis (see Figure 6.12). The following declaration creates a prismatic
joint between two bodies attached to the first body with axis at 45◦ as
shown in Figure 6.12.

b2PrismaticJointDef b2djdExample3 ;

b2djdExample3 .Initialize (pb2bBody1 , pb2bBody2 ,

b2v2Anchor1 , b2Vec2 (1.0f, 1.0f));

• 6.6.4 Pulley Joint

The pulley joint is used to create an idealized pulley. As one body goes
up the other goes down, conserving the total length of the pulley rope.
You can use a ratio to simulate a block-and-tackle, in which one side of
the pulley extends faster than the other. The block-and-tackle is used to
create mechanical leverage since the constraint force is smaller on one side
too. (See Figure 6.13.)

6.6 • Joints 157

Figure 6.13 • Pulley joint. Figure 6.14 • Gear joint.

b2Vec2 b2v2Ground1 ;

b2Vec2 b2v2Ground2 ;

float32 f32Ratio = 1.5f;

b2PulleyJointDef b2djdExample4 ;

b2djdExample4 .Initialize (

pb2bBody1 , pb2bBody2 , b2v2Anchor1 , b2v2Anchor2 ,

b2v2Ground1 , b2v2Ground2 , f32Ratio);

• 6.6.5 Gear Joint

The gear joint can only connect revolute or prismatic joints (see Fig-
ure 6.14). Like the pulley ratio, you can specify a gear ratio; however,
in this case, the gear ratio can be negative. When one joint is a revolute
joint (angular) and the other joint is prismatic (translation), the gear ratio
will have units of either length or 1− length.

Gear joints have no Initialize() function, so you’ll have to initialize
their member functions directly. Suppose we’ve already created a revo-
lute joint pointed to by b2djRevolute and a prismatic joint pointed to by
b2djdPrismatic. (Yes, I know we’re getting a little ahead of ourselves.
We’ll see how to actually create joints from joint descriptors later in Sec-
tion 6.6.10.)

b2GearJointDef b2djdExample5 ;

b2djdExample5 .joint1 = &b2djRevolute ;

b2djdExample5 .joint2 = &b2djdPrismatic ;

b2djdExample5 .ratio = 1.0f;

158 6 • A Tale of Three Modules

Figure 6.15 • Wheel joint. Figure 6.16 • Weld joint.

• 6.6.6 Wheel Joint

The wheel joint restricts a point on one body to a line on another (see
Figure 6.15).

b2WheelJointDef b2djdExample6 ;

b2djdExample6 .Initialize (pb2bBody1 , pb2bBody2 ,

b2v2Anchor1 , b2Vec2 (0.0f, 1.0f));

• 6.6.7 Weld Joint

The weld joint attempts to constrain all relative motion between two bodies
(see Figure 6.16). However, chains of bodies connected by weld joints will
flex.

b2WeldJointDef b2djdExample6 ;

b2djdExample6 .Initialize (

pb2bBody1 , pb2bBody2 , b2v2Anchor1);

• 6.6.8 Rope Joint

The rope joint restricts the maximum distance between two points. Don’t
try to change the length of the rope at runtime. Use a distance joint
instead.

b2RopeJointDef b2djdExample7 ;

b2djdExample7 .localAnchorA = b2v2Anchor1 ;

b2djdExample7 .localAnchorB = b2v2Anchor2 ;

6.6 • Joints 159

• 6.6.9 Friction Joint

The friction joint is used for z-axis friction, including both translational
and angular friction. To create a friction joint between two bodies, you need
to initialize the joint definition with anchor points on the bodies in body
space and an anchor point in world space. The joint has a SetMaxForce

function and a SetMaxTorque function that you can use to set its maximum
friction force and torque, respectively.

• 6.6.10 Creating, Using, and Destroying Joints

Joints must connect different bodies. They are usually used to connect
dynamic bodies, but one body may be static. Joints have no effect on
kinematic bodies.

Joints must be created and destroyed using the Physics World fac-
tory methods. Do not use new or malloc. For example, a distance joint
pb2djExample1 is created from the distance joint definition b2djdExample1

above as follows:

b2DistanceJoint * pb2djExample1 = (b2DistanceJoint *)

g_b2PhysicsWorld -> CreateJoint (& b2djdExample1);

Joints are deleted with the Physics World’s DestroyJoint function. Be
aware that when bodies are destroyed, the attached joints are also auto-
matically destroyed. Make sure that you either destroy joints before bodies,
or do a safe delete as in the code snippet below. It’s probably best to do
both.

if(pb2djExample1){ // safe delete

g_b2PhysicsWorld -> DestroyJoint (pb2djExample1);

pb2djExample1 = NULL;

}

There’s no need to keep joint definitions around after their joints have
been created, because you can get that information back from the joint
itself. For example, to get back the bodies and anchor points from the
joint pointed to by pb2djExample1,

b2Body* pb2bBodyA = pb2djExample1 -> GetBodyA ();

b2Body* pb2bBodyB = pb2djExample1 -> GetBodyB ();

b2Vec2 b2v2AnchorA = pb2djExample1 -> GetAnchorA ();

b2Vec2 b2v2AnchorB = pb2djExample1 -> GetAnchorB ();

160 6 • A Tale of Three Modules

All joints have a reaction force and a torque, which can be retrieved as fol-
lows. The following functions compute torque and force on demand, which
may require quite a bit of computation, so it’s best use them sparingly.

b2Vec2 b2v2Force =

pb2djExample1 -> GetReactionForce ();

float32 f32Torque =

pb2djExample1 -> GetReactionTorque ();

• 6.7 Exercises
If you haven’t already done so, go back to Section 5.1 and follow the in-
structions for downloading and installing Box2D before you attempt these
problems.

1. Make a list of the functions and classes in the Common Module files
b2Math.h and b2Math.cpp. There are some I didn’t include in Sec-
tion 6.1. What are they?

2. Evaluate the speed of the approximate inverse square-root function
b2InvSqrt from b2Math.h in the Common Module compared to the
obvious alternative of inverting the output of the standard sqrt func-
tion. Write a program that compares the running time for the two
approaches. You may need to repeat each function call a thousand
or more times and divide by the same to get a meaningful time mea-
surement.

3. Evaluate the accuracy of the approximate inverse square-root func-
tion b2InvSqrt from b2Math.h in the Common Module compared
to the obvious alternative of inverting the output of the standard
sqrt function. Write a program that compares the accuracy of the
two approaches. Collect data for a sample of randomly chosen n-bit
integers, for all 1 ≤ n ≤ 16. Draw a graph with n on the x-axis
and the average absolute value of the ratio of the approximated value
b2InvSqrt(m) to the real value 1/

√
m over the n-bit integers m on

the y-axis. Can you discern any pattern? Explain.

4. Examine the code for function GetSymInverse33 from b2Math.cpp in
the Common Module. Where exactly does it assume that the matrix
is symmetrical? Can you explain in one sentence what it returns if
the matrix isn’t symmetrical?

7
The Cannon Game

The Cannon Game gives the player control of a cannon in a world with
a tempting tower of books. The player’s job is to knock down the tower
in 60 seconds or less by firing cannonballs at it. The temperature of the
cannon goes up every time it is fired, and it cools down slowly afterwards.
The current temperature of the cannon barrel and the maximum temper-
ature reached so far are indicated on a temperature gauge (as shown in
Figure 7.1). If the cannon barrel is overstressed by heating it above the
maximum allowable temperature, then it will explode the next time it is
fired. (See Figures 7.2–7.6.) The player controls the cannon using the
keyboard. Table 7.1 shows the keyboard bindings.

Although this 60-second minigame is very basic, it exhibits in rudi-
mentary form all of the required characteristics of a game, which are the
following:

1. It has a virtual world.

2. The world has stuff in it.

3. The player can interact with the stuff.

4. The player can win.

5. The player can lose.

The “virtual world” is the screen space, the “stuff” is the cannon and the
books, the “interaction” is firing the cannon and knocking down the books,
the player “wins” when the books are knocked down and “loses” when the
cannon overheats. What’s not to like?

161

162 7 • The Cannon Game

Figure 7.1 • The temperature gauge.

Key Action

ESC Quit
Enter Restart
↑ Barrel up
↓ Barrel down
← Move left
→ Move right

Backspace Stop moving
Space Fire

Table 7.1 • The keys used in the Cannon Game.

Figure 7.2 • The start of the cannon game.

7.1 • The Platform and the Tower 163

Figure 7.3 • The cannon game is underway, the barrel is starting to heat up.

Figure 7.4 • The tower of books is toppled.

164 7 • The Cannon Game

Figure 7.5 • The tower has been vanquished.

Figure 7.6 • This is what happens when you let the cannon overheat.

7.1 • The Platform and the Tower 165

Figure 7.7 • The ledge is 512× 62 pixels.

• 7.1 The Platform and the Tower
I began by taking the Getting Started app from Section 5.4 and stripping
out the code in NonPlayerObjects.cpp. We’ll replace it with code to
create the cannon and the tower of books.

I want a platform for the cannon to sit on. In my favorite image editing
program,1 I create a ledge that is half the width of the image in Physics
World units, and I see in Figure 7.7 that it is 62 pixels high, which is
RW2PW(62) in Physics World units. There’s no need to make it a sprite,
so I just paint it into the background image background.png, as shown in
Figure 7.8. This code gets added to function CreateWorldEdges to add the
corresponding edge to Physics World, as shown in Figure 7.9 (remembering
that it has already computed w, the world width in Physics World units):

const float lh = RW2PW (62);

shape.Set(b2Vec2(0, lh), b2Vec2(w/2, lh));

edge ->CreateFixture (&shape , 0);

While we were a little cavalier about how we created the edge bodies for
the boundaries of our Physics World, it’s time we got a little more careful
about how we structure our code. We’re going to create the rest of the
physics bodies for our game in the following order:

1. Shape: b2Shape or any of the shapes derived from it, see Section 6.4.

2. Fixture: b2FixtureDef, see Section 6.5.2.

3. Body definition: b2BodyDef, see Section 6.5.3.

4. Body: b2Body, see Section 6.5.3.
...........................

1I like to use either Gimp or paint.net, depending on the task. They are both Open
Source, and between them, I have all the functionality that a lowly programmer could
need, for free.

166 7 • The Cannon Game

Figure 7.8 • The game background from background.png with the platform for
the cannon.

Figure 7.9 • The ledge in Render World with the edge in Physics World.

The dependencies between shape, fixture, body definition, and body are
illustrated in Figure 7.10. You can create them in any order that respects
these dependencies, but it makes sense to do so in the same order every
time to ensure that you don’t forget anything and to make your code more
readable. Consistency is good.2

Function PlaceBook in NonPlayerObjects.cpp looks a little like func-
tion CreateBook from Section 5.4. It’s been streamlined so it can be used
for multiple books, reusing the Fixture Definition which is passed as a new
parameter. It starts with a b2BodyDef that describes a b2_dynamicBody

at (x, y).

...........................
2Notwithstanding the Ralph Waldo Emerson quote “A foolish consistency is the

hobgoblin of little minds.” This is by no means a foolish consistency. It is a sensible
one.

7.1 • The Platform and the Tower 167

Figure 7.10 • Steps needed to create a Box2D body.

void PlaceBook (float x, float y,

const b2FixtureDef & fd)

{

b2BodyDef bd;

bd.type = b2_dynamicBody ;

bd.position .Set(x, y);

It creates the book in Object World first.

CGameObject * pGameObject =

g_cObjectWorld .create(BOOK_OBJECT);

Then, it creates the book in Physics World and gives the Object World
object a link to the PhysicsWorld object. Remember that the ObjectWorld
is the central place where we go to learn about objects as abstractions that
are instantiated in Physics World and Render World. We are on potentially
dangerous ground here. The Object World now has a pointer deep into
Physics World that it can use to get into a whole lot of pain if that pointer
gets written to. We’ll only use it to read, but there’s no guarantee that
future generations of coders maintaining your code will continue to do so.

• IMPORTANT POINT •
Don’t forget that getting pointers to things deep inside Box2D gives you great power that
comes with great responsibility. If you abuse that power, you may be heading for a world of
pain.

168 7 • The Cannon Game

We’re ready to leave after we attach the fixture defined by fd to the new
book body.

b2Body* pBook = g_b2dPhysicsWorld .CreateBody (&bd);

pGameObject -> SetPhysicsBody (pBook);

pBook ->CreateFixture (&fd);

} // PlaceBook

Function CreateTower creates a tower of books by using a bunch of calls
to PlaceBook. It starts by getting the Object World width and height in
Render World coordinates.

void CreateTower (){

float w, h;

g_cObjectWorld . GetWorldSize (w, h);

Next, we create a b2FixtureDef called bookfd and set it to a box that is
27×32 in Render World units, just as we did in function CreateBook from
Section 5.4.

b2PolygonShape bookshape ;

bookshape .SetAsBox (RW2PW(27), RW2PW (32));

b2FixtureDef bookfd;

bookfd.shape = &bookshape ;

bookfd.density = 1.0f;

bookfd.restitution = 0.3f;

We’ll build the tower of books 12 layers high one layer at a time using a
loop structure like this. The “then” part of the if statement places a single
book and gets executed in odd-numbered layers, that is, in layers 1, 3, 5,
7, 9, 11. The “else” part of the if statement places a pair of books and
gets executed in even-numbered layers, that is, in layers 0, 2, 4, 6, 8, 10.
It remains for us to figure out the coordinates to be given to PlaceBook.

for(int i=0; i<12; i++){

if(i&1)

PlaceBook (?, ?, bookfd);

else{

PlaceBook (?, ?, bookfd);

PlaceBook (?, ?, bookfd);

} //else

} //for

7.2 • The Heads-Up Display 169

Figure 7.11 • The relative positions of alternate layers of books. Their centers
are at (x, y), (x+60, y) on the bottom layer and (x+30, y+64) on the top layer
(in Render World coordinates).

Figure 7.11 shows that in an even-numbered layer, if the first book is placed
at (x, y), then the second one is draw at (x + 60, y). Similarly on an
odd-numbered layer, the book is to be drawn with x-coordinate x + 30.
Remembering to convert to Physics World units and remembering to add
32 pixels to y because things in Render World are drawn by specifying their
center points, we can fill out the details of the final for loop in CreateTower

as follows.

for(int i=0; i<12; i++){

float x = RW2PW(0.7f*w), y = RW2PW (32 + 64*i);

if(i&1)

PlaceBook (x + RW2PW(30), y, bookfd);

else{

PlaceBook (x, y, bookfd);

PlaceBook (x + RW2PW(60), y, bookfd);

} //else

} //for

} // CreateTower

• 7.2 The Heads-Up Display
The cannon has a heads-up display or HUD (Figure 7.12) that regis-
ters the barrel’s current and highest temperature at left and a stop watch

170 7 • The Cannon Game

Figure 7.12 • The Heads-up Display (HUD).

Figure 7.13 • Sprites for the objects that make up the HUD. (a) Thermometer
background, (b) current temperature indicator, (c) highest temperature indica-
tor, (d) stopwatch face, (e) stopwatch needle.

at right. For convenience, let’s make it a class CHeadsUpDisplay in files
hud.cpp, h. CHeadsUpDisplay is derived from CObjectManager since its
job will be to the care and feeding of the objects that make up the HUD,
a thermometer background, the current temperature indicator, the high-
est temperature indicator, the stopwatch background, and the stopwatch
needle. The sprites corresponding to the HUD objects are shown in Fig-
ure 7.13. The key thing about the HUD is that it consists of objects that
are outside of Object World and Physics World and need only be repre-
sented in Render World. CHeadsUpDisplay has its own constructor and it
overrides the inherited CObjectManager draw function.

class CHeadsUpDisplay : public CObjectManager {

public:

CHeadsUpDisplay (int size);

void draw(int secs , float temp , float maxtemp);

}; // CHeadsUpDisplay

The constructor simply passes its size parameter to the CObjectMan

ager constructor, which uses it for the size of its object array. Since the
number of HUD parts is small, the actual parameter for the CHeadsUpDis

play should be small but clearly at least 5.

7.2 • The Heads-Up Display 171

CHeadsUpDisplay :: CHeadsUpDisplay (int size):

CObjectManager (size){} // constructor

CHeadsUpDisplay’s draw function overrides the inherited CObjectMan

ager draw function. It has three parameters, the number of seconds to
display on the stopwatch, the current temperature, and the highest tem-
perature seen so far in the level. It declares a handy CGameObject pointer
p and makes sure that the number of seconds is less than 60.

void CHeadsUpDisplay :: draw(

int secs , float temp , float maxtemp)

{

CGameObject * p=NULL;

secs = secs % 60;

It loops through its inherited Object List, sets p to point to the current
object, and assuming that the object actually exists (we can assume that
it does since we don’t delete HUD objects, but you never know what might
happen in the future), it begins the task of determining where and at what
angle to draw the current HUD part.

for(int i=0; i<m_nSize ; i++){

p = m_pObjectList [i];

if(p){

float x=0.0f, y=0.0f, a=0.0f;

Naturally, these values depend on the type of the HUD object. I’ll leave
you to puzzle out the details for yourself.

switch(p->m_nObjectType){

case TEMPGAUGE_OBJECT :

x = 140.0f; y = 40.0f;

break;

case TEMPMAXNEEDLE_OBJECT :

x = 25 + min (300.0f, 256.0f * maxtemp /178.0f);

y = 40.0f;

break;

case TEMPNEEDLE_OBJECT :

x = 25 + min (300.0f, 256.0f * temp /178.0f);

y = 40.0f;

break;

case CLOCKFACE_OBJECT :

x = 350.0f; y = 70.0f;

break;

172 7 • The Cannon Game

The clock needle orientation a might cause you to pause for thought. Take
the number of seconds secs and divide by the number of seconds around
a clock face, which is 60. We multiply this by 2π since that’s the number
of radians in a full circle.

case CLOCKNEEDLE_OBJECT :

x = 350.0f; y = 70.0f;

a = ((float)secs /60.0f)*2.0f*b2_pi;

break;

} // switch

Now that we know what, where, and at what angle, we can go ahead and
ask the Render World to do the actual drawing. Render World has a handy
drawtop function that measures the vertical axis down from the top of the
screen, so we’ll use that.

g_cRenderWorld .drawtop (

p->m_nObjectType , x, y, a);

} //if

} //for

} //draw

• 7.3 The Object World
The class CObjectWorlddeclaration in ObjectWorld.h has had some things
added to it from the original version that we saw in our Getting Started
app in Section 5.4. It gets a new private member variable for the HUD and
a new public member variable for the cannon. It also has three new public
member functions, CreateHudObject, PlayerHasWon, and MakeSound.

private :

CHeadsUpDisplay * m_pHeadsUpDisplay ;

public:

CCannon m_cCannon ;

void MakeSound ();

CGameObject * CreateHudObject (GameObjectType t);

BOOL PlayerHasWon (float level);

The CObjectWorld constructor in ObjectWorld.cpp remains almost
exactly the same as before but gets a new line of code to create the HUD.

7.3 • The Object World 173

Figure 7.14 • Getting a Game Object’s position.

There’s a corresponding delete line in the destructor, too.

m_pHeadsUpDisplay = new CHeadsUpDisplay (32);

CreateHudObject asks m_pHeadsUpDisplay to create the requested HUD
object.

CGameObject * CObjectWorld ::

CreateHudObject (GameObjectType t)

{

return m_pHeadsUpDisplay ->create(t);

} // CreateHudObject

The player wins the game if all of the books are in, say, the bottom
quarter of the screen. The term “quarter” is a guess, so we’d better make
that value a parameter to this function. It might well vary from level to
level when we flesh out the game, so call it level. It’s intended to be a
fraction between 0 and 1, but doesn’t necessarily have to be that way. In
order to get the book altitudes, we need to follow the chain of pointers from
Object World to Physics World illustrated in Figure 7.14. We use a handy
object pointer p that is set to m_pObjectManager->m_pObjectList[i] on

174 7 • The Cannon Game

the ith iteration of a for loop that loops through the Object Manager’s
Object List. It gets that object’s height p->m_pBody->GetPosition().y,
(remembering not to get confused about the difference in units between
Physics World and Render World) and compares it to the required height.
If it’s above the required level, then it returns a fail.

BOOL CObjectWorld :: PlayerHasWon (float level){

BOOL result=TRUE;

CGameObject * p = NULL;

for(int i=0; i<m_pObjectManager -> m_nCount ; i++){

p = m_pObjectManager ->m_pObjectList [i];

if(p && p->m_nObjectType == BOOK_OBJECT)

result = result &&

PW2RW(p->m_pBody ->GetPosition ().y) <

m_fHeight /level;

} //for

return result;

} // PlayerHasWon

Function MakeSound asks m_pObjectManager to do the actual work.

void CObjectWorld :: MakeSound (){

m_pObjectManager -> MakeSound ();

} // MakeSound

• 7.4 The Cannon Object
Instead of placing variables and functions that represent the user directly
into the Object World code as I did in the Pool End Game app in Chapter 3,
I’ve chosen to wrap them up into their own class called CCannon in files
Cannon.h, cpp. As you will see, there are quite a lot of them. We’ll put an
instance of CCannon into CObjectWorld later. CCannon starts by making
CObjectWorld a friend, which is a lot easier than making a set of accessor
functions just so that CObjectWorld can interact with the cannon.

class CCannon {

friend class CObjectWorld ;

The first set of private member variables are pointers to the b2Bodys for
the parts of the cannon in Physics World. These represent the cannon’s
barrel, base, and wheels. Their Render World equivalents can be seen flying
apart in Figure 7.6, but most of the time, they will be joined together using

7.4 • The Cannon Object 175

Box2D joints and will look like a single cohesive object as shown in, for
example, Figure 7.2.

private :

b2Body* m_pCannonBarrel ;

b2Body* m_pCannonBase ;

b2Body* m_pWheel1 ;

b2Body* m_pWheel2 ;

The second set of private member variables are pointers to Box2D joints.
We’ll need three of them, two wheel joints (Section 6.6.6) joining a wheel
each to the base, and a revolute joint (Section 6.6.2) that joins the barrel
to the base.

b2WheelJoint * m_pCannonWheelJoint1 ;

b2WheelJoint * m_pCannonWheelJoint2 ;

b2RevoluteJoint * m_pCannonBarrelJoint ;

We’ll be monitoring the cannon’s state, including its current temperature,
its maximum allowable temperature (after which it explodes when fired),
the number of times it has been fired, and whether it has exploded yet.

float m_fCannonTemp ;

float m_fCannonMaxTemp ;

int m_nCannonBallsFired ;

BOOL m_bCannonExploded ;

CCannon’s private member functions include helper functions to create
the parts of the cannon in Physics World. Remember what a pain it is to
create Physics World objects. It’s not technically difficult, but you have
to pay attention to detail. There are three functions, one for each type of
cannon part, and each takes the coordinates of the part in Render World
units and a collision group index. The collision group index parameter
nIndex will be used to put the cannon parts in the same collision group
(see Section 6.5.2), which will be negative to ensure that the cannon parts
do not collide with each other. If we neglect to do this, then the cannon will
look fine when it is still, but it will behave badly when forces are applied
to parts of it as the collision constraints fight with the joint constraints.

b2Body* CreateCannonMount (

int x, int y, int nIndex);

b2Body* CreateCannonBarrel (

int x, int y, int nIndex);

b2Body* CreateWheel (int x, int y, int nIndex);

176 7 • The Cannon Game

The final private member functions are Impulse, which provides an impulse
to a particular b2Body along a vector v applied at point ds.

void Impulse(b2Body* b, b2Vec2& v, b2Vec2& ds);

void ResetCollisionGroupIndex(b2Body* b);

void StopMoving ();

The public member functions start with three birth-and-death func-
tions, a constructor, a create function that creates the cannon out of
Physics body parts, and an Explode function that takes care of dismem-
bering the cannon when it explodes.

public:

CCannon ();

void create ();

void Explode ();

The next three public member functions deals with the player’s control of
the cannon. Fire fires a cannonball. BarrelUp rotates the barrel up by
a given angle (down if it is negative), subject to constraints that prevent
it from reaching a ridiculous angle. StartMovingLeft starts the cannon
moving left under its own power at a given speed (right if it is negative).

BOOL Fire ();

void BarrelUp (float angle);

void StartMovingLeft (float speed);

The final group of four public member functions deals with the care and
maintenance of the cannon. BallsFired returns the number of cannon-
balls fired, IsDead returns TRUE if called after the cannon has exploded,
CoolDown cools the cannon down, and Reset resets the cannon back to its
initial conditions.

int BallsFired ();

BOOL IsDead ();

void CoolDown ();

void Reset ();

}; // CCannon

Now lets look at CCannon’s member functions. The constructor does
your basic constructor-y type things, NULLing out pointers and calling
Reset to set the rest of the private member variables to initial conditions.

7.4 • The Cannon Object 177

Figure 7.15 • The coordinates of the three triangle vertices of the cannon base
in Render World.

CCannon :: CCannon (){

m_pCannonBarrel = m_pCannonBase = NULL;

m_pWheel1 = m_pWheel2 = NULL;

m_pCannonWheelJoint1 = m_pCannonWheelJoint2 = NULL;

Reset();

} // constructor

CreateCannonMount has three parameters, the x and y coordinates of
the cannon in Render World and the collision group index for the cannon
parts, nIndex. It begins with a b2PolygonShape that is set to a triangle
with a horizontal base. The cannon mount is 128 × 128 pixels in Render
World, and if the top vertex of the triangle is at (0, 0), then the base vertices
have a y-coordinate of −64 and x-coordinates of ±64 in Render World (see
Figure 7.15).

b2Body* CCannon :: CreateCannonMount (

int x, int y, int nIndex)

{

b2PolygonShape shape;

b2Vec2 vertices [3];

const float s = RW2PW (64);

vertices [0]. Set(-s, -s);

vertices [1]. Set(s, -s);

vertices [2]. Set (0.0f, 0.0f);

shape.Set(vertices , 3);

178 7 • The Cannon Game

The cannon mount’s fixture gets assigned its shape, density, and restitution,
and the collision group index.

b2FixtureDef fd;

fd.shape = &shape;

fd.density = 1.0f;

fd. restitution = 0.4f;

fd.filter.groupIndex = nIndex;

The cannon mount’s body definition receives its position from the first two
parameters of the function (remembering to convert from Render World
units to Physics World units using RW2PW), and it is, of course, set to a
dynamic body type.

b2BodyDef bd;

bd.type = b2_dynamicBody ;

bd.position .Set(RW2PW(x), RW2PW(y));

Finally, we create the cannon mount body, attach the fixture, and return
a body pointer.

b2Body* body = g_b2dPhysicsWorld .CreateBody (&bd);

body ->CreateFixture (&fd);

return body;

} // CreateCannonMount

Function CreateCannonBarrel also takes as parameters the location of
the cannon barrel in the Render World and a collision group index. It does
the same steps as function CreateCannonMount in the same order, but its
shape is a box instead of a triangle.

b2Body* CCannon :: CreateCannonBarrel (

int x, int y, int nIndex){

// shape

b2PolygonShape shape;

shape.SetAsBox (RW2PW(67), RW2PW (22));

// fixture

b2FixtureDef fd;

fd.shape = &shape;

fd.density = 1.0f;

fd. restitution = 0.2f;

fd.filter.groupIndex = nIndex;

7.4 • The Cannon Object 179

// body definition

b2BodyDef bd;

bd.type = b2_dynamicBody ;

bd.position .Set(RW2PW(x), RW2PW(y));

// body

b2Body* body = g_b2dPhysicsWorld . CreateBody (&bd);

body ->CreateFixture (&fd);

return body;

} // CreateCannonBarrel

Function CCannon::CreateWheel is similar, but its shape is a circle of
radius 16 units in Render World.

b2Body* CCannon :: CreateWheel (

int x, int y, int nIndex)

{

// shape

b2CircleShape shape;

shape. m_radius = RW2PW (16);

// fixture

b2FixtureDef fd;

fd.shape = &shape;

fd.density = 0.8f;

fd. restitution = 0.6f;

fd.filter.groupIndex = nIndex;

// body definition

b2BodyDef bd;

bd.type = b2_dynamicBody ;

bd.position .Set(RW2PW(x), RW2PW(y));

// body

b2Body* body;

body = g_b2dPhysicsWorld .CreateBody (&bd);

body ->CreateFixture (&fd);

return body;

} // CreateWheel

The create function uses the above private member functions to put
together the cannon from the mount, barrel, and wheels, connecting them
with joints. nCannonCollisionGroup is the cannon’s collision group index,

180 7 • The Cannon Game

which we set arbitrarily3 to 42. It will be created on the ground in the
Physics World at x-coordinate fCannonX, which we set arbitrarily4 to 300
Render World units, which is about a third of the way across the screen.

void CCannon :: create (){

const int nIndex = -42;

const int nX = 300;

const int nY = 62;

The first thing we do is create the four cannon parts in Object World.

CGameObject * pBarrel =

g_cObjectWorld .create(CANNONBARREL_OBJECT);

CGameObject * pMount =

g_cObjectWorld .create(CANNONMOUNT_OBJECT);

CGameObject * pWheel1 =

g_cObjectWorld .create(WHEEL_OBJECT);

CGameObject * pWheel2 =

g_cObjectWorld .create(WHEEL_OBJECT);

Then, we create their counterparts in Physics World. You’ll notice that the
cannon mount was created at 84 pixels above the ground in Render World.
The cannon mount image is 128 pixels high (which is an artifact of DirectX
preferring textures that are square and a power of 2 in size), but the top
of the mount is at 64 pixels. The 84 pixels represents “64 plus a little bit”
that was found by trial and error. After attaching the cannon barrel, I
found that the weight of mount-plus-barrel caused the mount to sink on its
springs (which we will see in a moment) to about 13 pixels off the ground,
which looked about right. Creating the cannon barrel at the Physics World
equivalent of 72 pixels above the ground in Render World was adjusted until
it too looked about right. Putting the wheels 30 pixels in from the edge
of the base looked about right too. So, being completely honest about it,
the numbers 84, 72, and 30 in the following code were determined by trial
and error.5 The 16 is the radius of the wheels in Render World, which are
32× 32 pixels.

m_pCannonBase = CreateCannonMount (

nX , nY + 84, nIndex);

m_pCannonBarrel = CreateCannonBarrel (

...........................
3Well, not completely arbitrarily. It must, as I’ve said before, be negative to prevent

the cannon’s parts from colliding, and 42 is the “Answer to Life, the Universe, and
Everything” in Douglas Adams’ Hitchhiker’s Guide to the Galaxy trilogy.

4This one is arbitrary.
5Kluged.

7.4 • The Cannon Object 181

nX , nY + 72, nIndex);

m_pWheel1 = CreateWheel (

nX - 30, nY + 16, nIndex);

m_pWheel2 = CreateWheel (

nX + 30, nY + 16, nIndex);

Naturally, we are going to use wheel joints to connect the wheels to the
cannon mount. We declare a b2WheelJointDef, declare a vertical axis for
the suspension,6 and call the b2WheelJointDef’s Initialize function to
connect the first wheel to the cannon mount at the wheel’s position with
vertical axis.

b2WheelJointDef wd;

b2Vec2 axis (0.0f, 0.9f);

wd.Initialize (m_pCannonBase , m_pWheel1 ,

m_pWheel1 ->GetPosition (), axis);

The next few settings illustrate a simple way to put a little resistance on
the axle joints. We enable a joint motor with a high damping ratio and set
its speed to zero. We will use the wheel joints’ motors later to move the
cannon at the player’s command.

wd. dampingRatio = 0.9f;

wd.motorSpeed = 0.0f;

wd. maxMotorTorque = 1000.0f;

wd. enableMotor = TRUE;

Now, we can create the wheel joints for wheels 1 and 2, pausing in be-
tween to change the b2WheelJointDef’s position to the second wheel’s
position. It’s important to remember that Box2D’s CreateJoint func-
tion connects up the joint between the objects in their current positions
in the Physics World. This means, for example, that the length of the
invisible springs in the wheel joints connecting up the wheel to the chas-
sis will be exactly the right length to go from the current position of
the wheel to the current position of the body. Recall that in function
CreateCannon above, we created the cannon mount with the function call
CreateCannonMount(fCannonX, 8.4f, nCannonCollisionGroup). The
8.4 is the height of the cannon mount above the ground in Physics World.
If we changed the 8.4 to 16.4 or even 24.4, we’d see the cannon as depicted
in Figure 7.16. More importantly, the cannon would stay that way; that

...........................
6Remember that the wheel’s axis of rotation is parallel to the z-axis, which is per-

pendicular to the wheel.

182 7 • The Cannon Game

Figure 7.16 • The cannon mount created at heights 8.4, 16.4, and 24.4.

Figure 7.17 • The cannon will behave as if there are invisible springs between
the wheels and the mount when they are created in the positions in Figure 7.16.

is, it would behave as if the invisible springs connecting the wheels to the
body were like Figure 7.17.

• IMPORTANT POINT •
You must ensure that the bodies connected by your joint are in the correct relative position in
Physics World when the joint is created.

// create wheel joint for wheel 1

m_pCannonWheelJoint1 =

(b2WheelJoint *) g_b2dPhysicsWorld .CreateJoint (&wd);

// create wheel joint for wheel 2

wd. Initialize (m_pCannonBase , m_pWheel2 ,

m_pWheel2 ->GetPosition (), axis);

m_pCannonWheelJoint2 =

(b2WheelJoint *) g_b2dPhysicsWorld .CreateJoint (&wd);

7.4 • The Cannon Object 183

A revolute joint is used to connect the cannon barrel to the cannon mount.
The process is similar to the wheel joints above.

b2RevoluteJointDef jointDef ;

jointDef .Initialize (m_pCannonBarrel , m_pCannonBase ,

m_pCannonBarrel -> GetWorldCenter ());

jointDef .maxMotorTorque = 1000.0f;

jointDef .motorSpeed = 0.0f;

jointDef .enableMotor = true;

It wouldn’t look good for the cannon to be able to point in all directions, so
we set the revolute joint’s upper and lower angles and enable joint limits.
These lower and upper angles are measured from the barrel and mount’s
initial orientations in Physics World. Since the barrel is initially horizontal
and pointing to the right, we set the upper limit to zero (meaning that the
barrel is horizontal) and the lower limit to 45◦ counterclockwise, which is
−π/4 radians.7

jointDef .lowerAngle = -b2_pi /4.0f;

jointDef .upperAngle = 0.0f;

jointDef .enableLimit = TRUE;

Having now completed the joint definition, we can now create the revolute
joint between the cannon barrel and mount.

m_pCannonBarrelJoint = (b2RevoluteJoint *)

m_b2dPhysicsWorld . CreateJoint (& jointDef);

Finally, we leave create after passing a link to the Physics Bodies for the
cannon parts across to their matching Object World objects.

pBarrel ->SetPhysicsBody (m_pCannonBarrel);

pMount ->SetPhysicsBody (m_pCannonBase);

pWheel1 ->SetPhysicsBody (m_pWheel1);

pWheel2 ->SetPhysicsBody (m_pWheel2);

} // create

CCannon’s BarrelUp function has a single parameter angle, and its job
is to increment the cannon barrel’s angle of rotation by angle. It does this
by calling the cannon barrel body’s SetTransform function. SetTransform

...........................
7It may seem a little strange that the lower limit puts the cannon mouth higher in

the air than the upper limit, but it all makes sense when you remember that −π/4 < 0.

184 7 • The Cannon Game

requires a position and an angle, which is a bit inconvenient if you only want
to change one and not the other. We have to query the cannon body to
get something we can provide to SetTransform as its position parameter,
and we need its current angle of rotation to add angle to. Fortunately
for us, b2Body has a GetPosition function that returns position in the
correct units and coordinate space and a GetAngle function that returns
orientation.

void CCannon :: BarrelUp (float angle){

m_pCannonBarrel -> SetTransform (

m_pCannonBarrel -> GetPosition (),

m_pCannonBarrel -> GetAngle () + angle);

} // BarrelUp

CCannon’s StartMovingLeft function has a single parameter speed,
and its job is to start the cannon moving at speed speed. We’re going to
use Box2D’s built-in joint motors to do this. The cannon will be two-wheel
drive, so we need to activate the joint motors on both of the wheel joints.
Each activation takes two steps: first, call the wheel joint’s SetMotorSpeed
function to pass along the speed parameter, then start the motor by calling
the wheel joint’s EnableMotor function with parameter TRUE. First, how-
ever, we check that the joints actually exist. They might not if the player
is experimentally mashing the arrow keys after the cannon has exploded.
It might get picked up somewhere else in the code, but it’s best to be safe.

void CCannon :: StartMovingLeft (float speed){

if(m_pCannonWheelJoint1){

m_pCannonWheelJoint1 ->SetMotorSpeed (speed);

m_pCannonWheelJoint1 ->EnableMotor (TRUE);

} //if

if(m_pCannonWheelJoint2){

m_pCannonWheelJoint2 ->SetMotorSpeed (speed);

m_pCannonWheelJoint2 ->EnableMotor (TRUE);

} //if

} // StartMovingLeft

StopMoving does the opposite. It’s not enough to call StartMoving(0),
though, since we need to deactivate the motors with EnableMotor(FALSE).

void CCannon :: StopMoving (){

if(m_pCannonWheelJoint1){

m_pCannonWheelJoint1 ->SetMotorSpeed (0.0f);

m_pCannonWheelJoint1 ->EnableMotor (FALSE);

} //if

7.4 • The Cannon Object 185

if(m_pCannonWheelJoint2){

m_pCannonWheelJoint2 ->SetMotorSpeed (0.0f);

m_pCannonWheelJoint2 ->EnableMotor (FALSE);

} //if

} // StopMoving

Impulse(b, v, ds) applies an impulse to body b with direction and
magnitude specified by a vector v to be applied at point p, where p is in local
Object Space. b2Body’s ApplyLinearImpulse function will get the job
done. It is awfully tempting to just call b->ApplyLinearImpulse(v + ds),
but this won’t work because ApplyLinearImpulse requires the position
parameter to be in World Space. We transform from Object Space to
World Space by adding the body’s World Space position to the Object
Space ds.

void CCannon :: Impulse (

b2Body* b, b2Vec2& v, b2Vec2& ds)

{

b-> ApplyLinearImpulse (v, b->GetPosition () + ds);

}; // Impulse

Remember that the parts of the cannon were set to the same collision
group index so that they don’t collide with each other. Now would be a per-
fect time to write a short piece of code to reverse that. Box2D lets us read
a collision filter, change its settings, and then write it back to the fixture it
is connected to. Since we will need to do this for all of the bodies that make
up the cannon, we’ll make a handy function ResetCollisionGroupIndex.

void CCannon :: ResetCollisionGroupIndex(b2Body* b){

b2Filter f = b-> GetFixtureList ()-> GetFilterData ();

f.groupIndex = 0;

b-> GetFixtureList ()-> SetFilterData (f);

} // ResetCollisionGroupIndex

Function ExplodeCannon is what gets called when the cannon explodes
due to overheating. It asks PhysicsWorld to destroy the three joints holding
the cannon together, carefully making this a safe destroy by setting the
global joint pointers to NULL. There’s more work to do after that, though.

void CCannon :: Explode (){

// break joints

if(m_pCannonWheelJoint1){

186 7 • The Cannon Game

g_b2dPhysicsWorld .

DestroyJoint (m_pCannonWheelJoint1);

m_pCannonWheelJoint1 = NULL;

}

if(m_pCannonWheelJoint2){

g_b2dPhysicsWorld .

DestroyJoint (m_pCannonWheelJoint2);

m_pCannonWheelJoint2 = NULL;

}

if(m_pCannonBarrelJoint){

g_b2dPhysicsWorld .

DestroyJoint (m_pCannonBarrelJoint);

m_pCannonBarrelJoint = NULL;

}

We then apply impulses to the parts of the cannon using CCannon’s Impulse
function, described above, so that they fly apart most satisfactorily. The
magnitudes and directions of the impulses are kluged up values that seem
to look appropriately amusing.

Impulse (m_pCannonBase ,

b2Vec2 (0, 50), b2Vec2 (80, 80));

Impulse (m_pCannonBarrel ,

b2Vec2 (0, 100), b2Vec2 (40, 40));

Impulse (m_pWheel1 ,

b2Vec2 (-50, 200), b2Vec2 (1, 1));

Impulse (m_pWheel2 ,

b2Vec2 (50, 220), b2Vec2 (-1, -1));

Now, we set the collision group indices of the cannon bodies to zero so that
they can collide with each other, making use of CCannon’s ResetCollision
GroupIndex function that we described earlier.

ResetCollisionGroupIndex(m_pCannonBase);

ResetCollisionGroupIndex(m_pCannonBarrel);

ResetCollisionGroupIndex(m_pWheel1);

ResetCollisionGroupIndex(m_pWheel2);

Lastly, we set m_bCannonExploded to TRUE to indicate that the cannon has
exploded, and we’re ready to go.

m_bCannonExploded = TRUE;

} // Explode

7.4 • The Cannon Object 187

Now we get to write code to fire the cannon. We’ll use the timer to slow
down the maximum rate of fire.8 We’ll use a static local integer variable9

nLastFireTime to remember the last time that the cannon fired.

BOOL CCannon :: Fire (){

static int nLastFireTime =0;

The cannon can’t fire if it has exploded, and it can’t fire until a quarter
of a second has passed since the last time it fired. Otherwise, it’s going to
fire, so its temperature will increase by an arbitrary 50◦.

if (! m_bCannonExploded &&

g_cTimer .elapsed(nLastFireTime , 250)){

m_fCannonTemp += 50.0f;

We need a shape, a fixture definition, and a body definition for the new
cannonball. Since the cannonball sprite in ball.png is 32 × 32 pixels,
the ball’s radius is 16 units in Render World, and therefore, RW2PW(16)
units in Physics World. I’ve chosen reasonable values for the cannonball’s
density and coefficient of restitution. Naturally, the cannonball needs to
be a dynamic body.

b2CircleShape ballshape ;

ballshape .m_radius = RW2PW (16);

b2FixtureDef ballfd;

ballfd.shape = & ballshape ;

ballfd.density = 0.5f;

ballfd.restitution = 0.3f;

b2BodyDef bd;

bd.type = b2_dynamicBody ;

The initial placement of the cannonball needs some linear algebra.10 Clearly,
it depends on both the position and the orientation of the cannon barrel.
The more the barrel is pointed up, the higher the cannonball’s initial posi-
tion will be, as you can see in Figure 7.18. Let’s put the initial position of

...........................
8Not only can the player emulate a machine-gun style cannon by holding down the

space bar so that it autorepeats, in extreme cases he or she might be tempted to change
their computer’s autorepeat timing to get a faster rate of fire—serious geek stuff.

9I could have made it a CCannon private member variable, but this makes it clear
that it is to be used by this function only.

10If you are still rusty about linear algebra, consult [Dunn and Parberry 11].

188 7 • The Cannon Game

Figure 7.18 • The initial position of the cannonball depends on both the cannon
barrel position and orientation.

Figure 7.19 • The initial position of the cannonball should be 85 pixels from the
center of the cannon barrel.

the cannonball 5 pixels beyond the muzzle in Render World. The cannon
barrel image is 128× 128 pixels, and the ball is 32× 32 pixels, making the
total distance 64 + 5 + 16 = 85 pixels from the center of the barrel to the
center of the ball, as shown in Figure 7.19.

The initial distance from barrel to ball in Physics World is RW2PW(85).
b2Vec2(RW2PW(85),0) is a horizontal vector of that length. The barrel’s
orientation is m_pCannonBarrel->GetAngle(), as we saw above when dis-
cussing CCannon’s BarrelUp function. A transformation for a rotation by
that amount is b2Rot(m_pCannonBarrel->GetAngle()) (b2Rot has a con-
structor that takes an angle parameter, as you may11 recall from Table 6.8).
Applying that rotation transformation to b2Vec2(RW2PW(85),0) gives us a
vector displacement from the center of the barrel to the center of the ball.
This is done with b2Mul, as follows:

b2Mul(b2Rot(m_pCannonBarrel->GetAngle()), b2Vec2(RW2PW(85),0)).

The center of the barrel is at m_pCannonBarrel->GetPosition(). There-
fore, we compute the initial position of the ball v and use it to set the ball’s
initial position in bd, as follows.

b2Vec2 v =

m_pCannonBarrel ->GetPosition () +

...........................
11But probably won’t.

7.4 • The Cannon Object 189

Figure 7.20 • Firing the cannon in this position should lead to an explosion.

b2Mul(

b2Rot(m_pCannonBarrel ->GetAngle ()),

b2Vec2(RW2PW(85),0)

);

bd.position .Set(v.x, v.y);

If the cannon’s mouth is pointing towards the ground, then the cannon
explodes. This can happen if the player drives the cannon off the edge of
the platform as shown in Figure 7.20. The easiest way to detect this is to
check whether the cannonball’s y-coordinate v.y is less than zero since we
create the cannonball object a little beyond the mouth of the cannon.

if(v.y < 0.0f)

Explode ();

Otherwise, the barrel is free and clear, so we can go ahead and fire. At
last! We start by creating the cannonball in Object World and in Physics
World, telling the Object World object about the Physics World one.

else{

CGameObject * pGameObject =

g_cObjectWorld .create(BALL_OBJECT);

190 7 • The Cannon Game

b2Body* pCannonball =

g_b2dPhysicsWorld .CreateBody (&bd);

pGameObject -> SetPhysicsBody (pCannonball);

pCannonball -> CreateFixture (& ballfd);

At this point, the cannonball would just thud to the ground if left to its
own devices. To launch it, we need to apply an impulse in the direction
that the cannon barrel is pointing. Fortunately, we already know how to
find that vector. Let’s arbitrarily apply an impulse of magnitude 200. The
magnitude depends on the mass of the cannonball in Physics World and
the desired behavior of the cannonball in Render World. Thirty seconds of
playtesting will at least get you in the right ballpark.

StopMoving ();

b2Vec2 vImpulse = b2Mul(

b2Rot(m_pCannonBarrel ->GetAngle ()),

b2Vec2 (200, 0));

It would be cool to apply a recoil impulse to the cannon barrel in the other
direction so that the cannon is rocked on its springs and pushed backwards.
We use the CCannonmember function Impulse to apply the right impulses.
Let’s make the recoil impulse have half the magnitude of the launch impulse
in the other direction by multiplying the b2Vec2 vImpulse vector by the
scalar -0.5f using the b2Vec2 overloaded multiplication operator to make
it look clean. After applying the pair of impulses, we increment the counter
m_nCannonBallsFired and return TRUE to indicate that we succeeded.

Impulse (pCannonball , vImpulse);

Impulse (m_pCannonBarrel , -0.5f * vImpulse);

m_nCannonBallsFired ++;

return TRUE;

} //else

If we failed for any reason, we return FALSE instead.

} //if

return FALSE;

} //Fire

CCannon has a BallsFired function that returns the number of balls
that have been fired. We’re going to use this later for the “You’ve won”

7.4 • The Cannon Object 191

message displayed on the screen. It’s just a simple reader function for the
private member variable m_nCannonBallsFired.

int CCannon :: BallsFired (){

return m_nCannonBallsFired ;

} // BallsFired

Function CoolDown reduces the cannon’s temperature by a small amount.
We’re going to call this regularly to emulate the gradual cooling of a hot
object. If the barrel is hotter than it has ever been before, then we change
the maximum registered temperature to the current one. Then we linearly
reduce the cannon’s temperature by an arbitrary factor12 of 64.0f. Fi-
nally, if the cannon is too hot (and it hasn’t exploded already), then make
it explode.

void CCannon :: CoolDown (){

if(m_fCannonTemp > m_fCannonMaxTemp)

m_fCannonMaxTemp = m_fCannonTemp ;

if(m_fCannonTemp > 0)

m_fCannonTemp -= m_fCannonTemp /64.0f;

if(m_fCannonTemp >= CANNONEXPLODETEMP &&

! m_bCannonExploded)

Explode ();

} // CoolDown

IsDead is another reader function, this time for the private member
variable m_bCannonExploded.

BOOL CCannon :: IsDead (){

return m_bCannonExploded ;

} // IsDead

Reset puts the cannon back to the initial conditions at the start of a
level. This is used in the CCannon constructor and in the code to restart a
level.

...........................
12Dividing the temperature by a constant emulates the linear cool-down of hot objects

in the Real World, in which temperature loss is proportional to temperature difference,
meaning that the hotter an object is, the faster it cools down. I’m not sure this is worth
the trouble. It’s a playability issue that can probably be resolved through playtesting.

192 7 • The Cannon Game

void CCannon :: Reset(){

m_fCannonTemp = m_fCannonMaxTemp = 0.0f;

m_nCannonBallsFired = 0;

m_bCannonExploded = FALSE;

} // Reset

• 7.5 The Frame Loop and the Keyboard Handler
MyGame.cpp has a function RenderFrame to render a frame of animation.
It starts by asking Render World to start the rendering pipeline. If that
fails, it bails. Otherwise, it asks Render World to draw the background.
Then it asks Object World to draw the game objects. Object World will
ask Render World to draw them based on the position information that it
gets from Physics World. Finally, Render World is given the opportunity
to write a winning or losing message to the screen. It is told about the
game state, the number of shots fired, and the elapsed time, the former
so that it can make a decision about whether to write or not, and the
latter two values so it can write them to the screen for boasting purposes.
RenderFrame ends by asking the Render World to shut down the graphics
pipeline in preparation for the next animation frame.

void RenderFrame (){

if(g_cRenderWorld . BeginScene ()){

g_cRenderWorld . DrawBackground ();

g_cObjectWorld .draw ();

g_cRenderWorld . DrawWinLoseMessage (

g_cObjectWorld . m_cCannon .BallsFired (),

g_nGameState ,

g_cTimer .GetLevelElapsedTime ()/1000);

g_cRenderWorld .EndScene ();

} //if

} // RenderFrame

ProcessFramebegins with some start-of-frame housekeeping. The timer
and the Sound Manager are notified that the frame is starting, the former
so that it returns the same time measurement over the course of the entire
frame, and the latter so that there are no double plays.

void ProcessFrame (){

g_cTimer .beginframe ();

g_pSoundManager -> beginframe ();

7.5 • The Frame Loop and the Keyboard Handler 193

Object World is then asked to move the game objects (which task it will,
of course, subcontract out to Physics World), to make the appropriate
sounds, and to cool the cannon down a little. Then the largest per-frame
task begins, a call to function RenderFrame to draw a frame of animation.

g_cObjectWorld .move ();

g_cObjectWorld .MakeSound ();

g_cObjectWorld .m_cCannon .CoolDown ();

RenderFrame ();

Next, some stuff that is only done during PLAYING_GAMESTATE, managing
the clock, and checking whether the player has won or lost. We start with
the clock. We grab the elapsed time in seconds into a local variable t and
compare it to a static local variable lasttick which, as you should know
already, persists from frame to frame. If they are different, we play a “tick”
sound and set lasttick to t to delay the next “tick” for another second.

if(g_nGameState == PLAYING_GAMESTATE){

int t = g_cTimer . GetLevelElapsedTime ()/1000;

static int lasttick =0;

if(lasttick != t){

g_pSoundManager ->play(TICK_SOUND);

lasttick = t;

} // if

While we’re still in the PLAYING_GAMESTATE if statement, we should check
for game over. The player has lost if either the cannon has exploded or
time has run out. If so, change g_nGameState to LOST_GAMESTATE, play a
disapproving sound, and stop the clock.

if(g_cObjectWorld . m_cCannon .IsDead () ||

t >= g_nMaxPlayingTime){

g_nGameState = LOST_GAMESTATE ;

g_pSoundManager ->play(LOSE_SOUND);

g_cTimer .StopLevelTimer ();

} //if lost

Otherwise, ask the Object World whether the player has won. We’ll define
winning to be knocking all of the books into the bottom quarter of the
screen. The Object World’s PlayerHasWon function takes a single param-
eter, let’s call it f, and returns TRUE if the y-coordinates of all of the books

194 7 • The Cannon Game

are less than 1/f of the screen height. I’ve made it a parameter because it’s
an obvious thing to use later to increase the difficulty level.13 If so, change
g_nGameState to WON_GAMESTATE, play an approving sound, and stop the
clock. That ends function ProcessFrame.

else

if(g_cObjectWorld .PlayerHasWon (4.0f)){

g_nGameState = WON_GAMESTATE ;

g_pSoundManager ->play(WIN_SOUND);

g_cTimer . StopLevelTimer ();

} //else if won

} //if playing

} // ProcessFrame

Finally, the keyboard handler lets the player interact with the cannon,
which, you will recall, is represented by a CCannon class public member vari-
able m_cCannon inside the Object World. We arbitrarily pick an angle of
0.01f radians as the amount that the cannon barrel rotates in response to
the appropriate key click and 2.0f the speed that the cannon moves. These
values are named CANNONBARREL_DELTA_ANGLE and CANNONMOVE_DELTA, re-
spectively. While we’re at it, we grab a pointer to the CCannon from Object
World and store it in a local pointer variable cannon. This is not so much
for efficiency, since any decent optimizing compiler should be able to do
the same thing at compile time, but it certainly increases the readability
of the source code.

BOOL KeyboardHandler (WPARAM k){

const float CANNONBARREL_DELTA_ANGLE = 0.01f;

const float CANNONMOVE_DELTA = 2.0f;

CCannon * cannon = &(g_cObjectWorld .m_cCannon);

VK_ESCAPE has to work in any game state so that the player can quit the
game at any time.

if(k == VK_ESCAPE)return TRUE;

Then, there’s a switch statement for keystrokes during PLAYING_GAMESTATE.
Each keystroke gets tied to the corresponding CCannon member function.

if(g_nGameState == PLAYING_GAMESTATE)

switch(k){

...........................
13When I get around to it.

7.6 • Son et Lumière 195

case VK_UP:

cannon ->BarrelUp (CANNONBARREL_DELTA_ANGLE);

break;

case VK_DOWN:

cannon ->BarrelUp (-CANNONBARREL_DELTA_ANGLE);

break;

case VK_LEFT:

cannon -> StartMovingLeft (CANNONMOVE_DELTA);

break;

case VK_RIGHT :

cannon -> StartMovingLeft (- CANNONMOVE_DELTA);

break;

If the cannon fires successfully, then the Sound Manager plays the appro-
priate sound.

case VK_SPACE :

if(cannon ->Fire ())

g_pSoundManager ->play (CANNONFIRE_SOUND);

break;

} // switch

Now, we’ll look at the keystrokes that only work when you’re not playing.
The only one is the key to restart the game. That’s the last thing to be
done in KeyboardHandler.

else

if(k == VK_RETURN)

BeginGame ();

return FALSE;

} // KeyboardHandler

• 7.6 Son et Lumière
Son et Lumière is French for a “sound and light show,” a traditional form
of outdoor entertainment that uses, as one might guess, sound and light.
That’s all we have left to do in this code example: sounds and light. Sounds
involve knowing when objects hit each other, and light involves knowing

196 7 • The Cannon Game

where to draw them. Both of these involve interacting with Physics World.
We’ll start with sound. The Object Manager’s MakeSound asks each object
in the Object List to make its own sounds.

void CObjectManager :: MakeSound (){

for(int i=0; i<m_nSize ; i++)

if(m_pObjectList [i])

m_pObjectList [i]->MakeSound ();

} // MakeSound

For this game, those will be the sounds of collisions. A quick and dirty
way to figure out when a collision happens is to check each object’s change
in velocity from the previous animation frame. We can logically assume
that if the change in velocity is large enough in magnitude, then a collision
must have happened. (There is a more efficient way of doing this using a
Box2D contact listener, but we’ll postpone that to Section 8.2.)

After a quick safety check of the m_pBody body pointer, we use the
Box2D body’s GetLinearVelocityFromWorldPoint to put the object’s ve-
locity vector in the Physics World’s frame of reference into a local variable
vNewV. I forgot to mention that we need to add a new private member
variable m_b2vOldV to hold the old velocity vector. The velocity change
vector vDelta is the difference between the new and old velocities. We
then check that its change in speed, the length vDelta, is large enough to
warrant making a noise about it. Notice that we compute length-squared
using the LengthSquared function instead of Length to save the unneces-
sary square root calculation, taking care to square the right-hand side of
the comparison that it’s used in (which was kluged anyway).

void CGameObject :: MakeSound (){

if (! m_pBody)return;

b2Vec2 vNewV = m_pBody ->

GetLinearVelocityFromWorldPoint(b2Vec2 (0, 0));

b2Vec2 vDelta = m_b2vOldV - vNewV;

if(vDelta.LengthSquared () > 25000.0 f)

Now we enter a switch statement to play the correct thump or clang sound
based on object type.

switch(m_nObjectType){

case BALL_OBJECT :

case WHEEL_OBJECT :

7.7 • Exercises 197

g_pSoundManager ->play(THUMP_SOUND);

break;

case BOOK_OBJECT :

case CANNONMOUNT_OBJECT :

g_pSoundManager ->play(THUMP2_SOUND);

break;

case CANNONBARREL_OBJECT :

g_pSoundManager ->play(CLANG_SOUND);

break;

} // switch

On the way out, we remember to update m_b2vOldV so it’s ready for the
next animation frame.

m_b2vOldV = vNewV;

} // MakeSound

The Object Manager’s draw function must query Physics World to get
each object’s position in Physics World units and angle in radians. It then
asks Render World to draw the correct sprite in the correct screen position
in Render World units. Throw in a bit of safety code to make sure that
the body pointer is not NULL, and we’re done:

void CObjectManager :: draw (){

CGameObject * p;

for(int i=0; i<m_nSize ; i++){

p = m_pObjectList [i];

if(p){

float a = p->m_pBody ->GetAngle ();

b2Vec2 v = p->m_pBody ->GetPosition ();

g_cRenderWorld .draw(p->m_nObjectType ,

PW2RW(v.x), PW2RW(v.y), a);

} //if

} //for

} // draw

• 7.7 Exercises
1. The collision shape for the cannon barrel is currently a box, but

the barrel is not really box-shaped. Change function CreateCannon

Barrel in MyGame.cpp to replace the collision box with a polygon.

198 7 • The Cannon Game

Figure 7.21 • The cannon gets crushed under books and cannonballs. Notice
that it is hunkered down on its suspension like a lowrider.

2. Modify the code so that the cannonballs disappear after a lifetime of
15 s.

3. You may notice that as objects fall on it, the cannon can get pushed
down on its suspension so that the mount meets the ground as shown
in Figure 7.21. Write code to detect when this happens, and make
the cannon explode.

4. Rocket jumping is the technique of using the recoil from a rocket
launcher as a method of propulsion in first-person shooters.14 Modify
the Cannon Game so that the player can point the cannon at the
ground and use the recoil from cannonfire to loft the cannon into the
air as shown in Figure 7.22. You will need to make the following
changes to MyGame.cpp.

(a) Disable the limits on the revolute joint between the cannon bar-
rel and the mount so that the cannon can point vertically down-
wards.

(b) Disable the countdown timer so that you have time to experi-
ment (optional).

(c) Disable the cannon temperature change so that the barrel won’t
explode.

(d) Disable the cannon explosion when the barrel is pointing at the
ground.

(e) Make the cannonball appear closer to the barrel.
(f) Increase the amount of recoil. I recommend modifying the re-

coil to have double the magnitude of the impulse given to the
cannonball.

...........................
14It first appeared in Doom in 1993. There was a place where you had (almost, it

turns out) no option but to rocket jump. It was horizontal rocket jumping, but the
principle is still the same.

7.7 • Exercises 199

Figure 7.22 • Cannon jumping.

5.* Use the Cannon Game code to make a two-player cannon game in

which a pair of cannons face each other behind a wall of blocks. The
first player to hit their opponent’s cannon ten times wins. Remap the
keys so that Player 1 uses keys on the left-hand side of the keyboard
and Player 2 uses keys on the right-hand side of the keyboard.

6.* Add code to the Cannon Game to give it multiple levels with varying

amounts of difficulty. For example, you could start by limiting the
number of shots allowed as well as the time. You should also consider
putting extra objects into the game to make it harder and powerups
to make it easier. The one who comes up with the best game idea
wins.

This page intentionally left blankThis page intentionally left blank

8
The Collision Module

The aim of this chapter is to drill down into some of the Box2D Collision
Module code that you probably don’t need to mess with in the normal
course of making a game with Box2D. It’s here for the curious and for the
advanced programmer who needs to get more features of more performance
out of Box2D by messing with its internals.

• 8.1 Contacts and Manifolds
Section 6.3.1 gave us a quick peek into Box2D contact manifolds, which,
you will recall, are a discrete approximation to a continuous region of con-
tact. Now it’s time to look into contacts and contact manifolds more care-
fully. Let’s do this bottom-up, starting with the most basic structures in
b2Collision.h and moving up to more complicated ones.

A contact feature is a very small structure that indicates which features,
either vertices or edges, on the colliding bodies are actually doing the col-
liding. It begins with a local definition of a Type, which can be either a
vertex e_vertex or an edge e_face. The structure consists of exactly four
bytes, two for the indices of the contacting features in the edge or vertex
array of the colliding fixtures, and two for the Types of those features. The
naming convention used throughout this code is that the two colliding bod-
ies are thought of as Body A and Body B and, for example, indexA and
typeA belong to Body A.

struct b2ContactFeature {

enum Type{

e_vertex , e_face

};

201

202 8 • The Collision Module

Figure 8.1 • A b2ManifoldPoint structure for two colliding circles.

uint8 indexA;

uint8 indexB;

uint8 typeA;

uint8 typeB;

};

The b2ContactFeature structure is kept to four bytes so that it can be
unioned with a 32-bit integer in b2ContactID to allow fast comparison.

union b2ContactID {

b2ContactFeature cf;

uint32 key;

};

A manifold point structure b2ManifoldPoint stores the information
associated with a contact point inside a contact manifold. It has four fields
(see Figure 8.1): localPoint holds the position of the point of contact in
local space; normalImpulse holds the normal impulse, which prevents the
bodies from interpenetrating; tangentImpulse holds the tangent impulse,
which is used for friction; and id holds the contact id as described above.

struct b2ManifoldPoint {

b2Vec2 localPoint ;

float32 normalImpulse ;

float32 tangentImpulse ;

b2ContactID id;

};

Now for the forbidden and mysterious1 b2Manifold structure. It starts
with a local definition of an enumerated type Type. More about that in
...........................

1If the words “hidden and mysterious” don’t ring a bell, you should probably refresh
yourself on the material in Section 6.3.1.

8.1 • Contacts and Manifolds 203

Type Vector Used For

e_circles localPoint local center of circleA
localNormal not used

e_faceA localPoint center of faceA
localNormal normal on polygonA

e_faceB localPoint center of faceB
localNormal normal on polygonB

Table 8.1 • What the vectors localPoint and localNormal are used for in a
b2Manifold structure, depending on the type field.

a moment. The fields begin with an array points of b2ManifoldPoint,
which, as you recall from above, store information about the contact points,
including locations and impulse vectors. Before you get too excited, recall
from Section 6.3.1 that b2_maxManifoldPoints is #defined to be 2. We
can deduce from this that the last field pointCount, which counts the
number of points in the manifold, can be either 1 or 2. Returning to
the three fields that I skipped over, type is of type Type, which is an
enumerated type2 that consists of three values, e_circles, e_faceA, and
e_faceB. Type e_circles is used when two circles collide; otherwise,
one of e_faceA and e_faceB is used, depending on whether the contact
manifold is for Body A or Body B.3 The usage of the remaining two vectors
localPoint and localNormal depends on the value of the type field, as
shown in Table 8.1.

struct b2Manifold {

enum Type{

e_circles , e_faceA , e_faceB

};

b2ManifoldPoint points[b2_maxManifoldPoints];

b2Vec2 localNormal ;

b2Vec2 localPoint ;

Type type;

int32 pointCount ;

};

As noted in Section 6.3.1, the preferred way for a programmer to in-
teract with a contact manifold is through the b2WorldManifold structure,
...........................

2Yes, I really just did find a legitimate way to use the word “type” four times in a
ten-word phrase. I’m rather proud of it, although any grammarian with any kind of
sensibility at all will probably be on the floor writhing in pain.

3Look back at the intro to this section if you’ve forgotten what Body A and Body B
mean.

204 8 • The Collision Module

Figure 8.2 • Collision points marked by stars.

which has a handy Initialize function that builds it from a b2Manifold.
Remember to keep the original b2Manifold around though, since it con-
tains information not available through b2WorldManifold, such as the
number of contact points.

The Initialize function will set normal to be the contact normal
and the vector array points to be the contact points, all in world space
coordinates (recall that they are in local space coordinates in b2Manifold).
Function Initialize has five parameters, the first of which is a pointer
to the b2Manifold structure for the contact, manifold. The second and
fourth parameters xfA and xfB are the body-to-world space transforms
for the two colliding bodies, Body A and Body B. The third and fifth
parameters radiusA and radiusB are the radii of Body A and Body B,
respectively. These should be computed from the shapes attached to them.

struct b2WorldManifold {

void Initialize (const b2Manifold * manifold ,

const b2Transform & xfA , float32 radiusA ,

const b2Transform & xfB , float32 radiusB);

b2Vec2 normal;

b2Vec2 points[b2_maxManifoldPoints];

};

For example, if I wanted to do some sexy collision response such as
using a particle engine to put a star at contact points like in Figure 8.2, I
would write a function MyStarMaker as follows.

void MyStarMaker (const b2Manifold * m,

const b2Transform & tA , const b2Shape & sA ,

const b2Transform & tB , const b2Shape & sB)

{

b2WorldManifold w;

w. Initialize (m, tA , sA.m_radius , tB, sB.m_radius);

for(int32 i=0; i<m.pointCount ; i++){

8.1 • Contacts and Manifolds 205

Figure 8.3 • How to use a contact manifold in your own collision-response code.

b2Vec2 p = w.points[i];

// Animate a star at point p in Physics World

...

} //for

} // MyStarMaker

The flow of information between code and structures is summarized in
Figure 8.3. Each of the bodies involved in the contact will have an attached
shape, which will have a radius m_radius. We have a transform from each
body’s local space to its current position and orientation in world space and
a contact manifold. These are used to construct a world manifold using
the latter’s Initialize function. The contact manifold and the world
manifold are both needed in MyStarMarker.

There is a better way of doing this using a contact listener, which we
will examine in the next section. It is useful to be able to test whether
anything has changed in a contact manifold from the last time step to
the current one, in particular, whether a contact point has been added or
removed from the manifold. Box2D has a b2GetPointStates function that
compares two manifolds and reports back on the point state of each of the
manifold points using the following enumerated type.

enum b2PointState {

b2_nullState , b2_addState ,

b2_persistState , b2_removeState

};

206 8 • The Collision Module

The point states likely to be of the most interest are b2_addState and
b2_removeState, which indicate that the point has been added or re-
moved from the manifold, respectively. b2_persistState means that the
point is totally boring in that nothing has changed. b2_nullState is a
kind of sentinel state indicating that the point does not exist. Func-
tion b2GetPointStates has four parameters. The last two parameters,
manifold1 and manifold2, are pointers to the manifolds to be compared.
The first two parameters are the returned values, state1 and state2.
These are arrays of b2PointState, one for each of the (two) possible
points in the manifold. It’s important to note that state1 is forward-
looking in that it records what will happen to a point in manifold1,
whereas state2 is backward-looking in that it records what happened to
a point in manifold2. The practical consequences of this are that only
state1 can have state b2_removeState and only state2 can have state
b2_addState.

• 8.2 Contact Listeners
We’re wasting processor time by investigating every contact manifold for
every body to see whether there are contact points that need stars on them
because most of the time, most game objects probably won’t be doing any
colliding with anything. It would be better to look at only the nonempty
contact manifolds, meaning the ones that actually have points in them.
Box2D gives us a class called a contact listener that lets us select only the
nonempty contact manifolds. All we have to do is write a function that
Box2D is to call once for each nonempty contact manifold.

This is done by deriving a class from b2ContactListener, which has
four member functions. BeginContact gets called from within a physics
time step when a contact begins. EndContact gets called from within a
physics time step when a contact ends and will also get called from outside
a time step if a contacting body is destroyed. Both functions have a single
parameter of type b2Contact* that the solver will use to give you a pointer
to the contact structure. PreSolve gets called after collision detection
but before collision resolution, and PostSolve gets called after collision
resolution. These have two parameters, the same b2Contact* pointer, plus
a b2Manifold* pointer that points to the old contact manifold as described
at the end of Section 8.1.

class b2ContactListener {

public:

void BeginContact (b2Contact * contact);

void EndContact (b2Contact * contact);

8.2 • Contact Listeners 207

void PreSolve (b2Contact * contact ,

const b2Manifold * oldManifold);

void PostSolve (b2Contact * contact ,

const b2ContactImpulse * impulse);

};

We’re going to derive a contact listener called CMyContactListener for the
Cannon Game as follows:

class CMyContactListener : public b2ContactListener {

public:

void PreSolve (b2Contact * contact ,

const b2Manifold * oldManifold);

}; // CMyContactListener

We declare an instance of CMyContactListener as a global variable.

CMyContactListener g_cMyContactListener ;

That just creates a contact listener but does not activate it. To activate it,
we need to call the Physics World’s SetContactListener function. Func-
tion InitGame in MyGame.cpp is a good place to do this. We can just add
the following line of code to the end of that function.

g_b2dPhysicsWorld . SetContactListener (

& g_cMyContactListener);

g_cMyContactListener has been declared and activated, but we have yet
to implement function PreSolve. Algorithm 3 gives an overview of the
major steps involved.

Algorithm 3 • CMyContactListener::PreSolve

Get the two bodies Body A and Body B that are contacting
if there is a new contact point then
wp ← the contact point in Physics World Space
speed ← the relative speed between Body A and Body B
if speed is large enough then
Play a “bonk” sound
Create a star particle at point wp

end if
end if

208 8 • The Collision Module

Our function PreSolve begins by getting the contact manifold into world
space in a b2WorldManifold structure by calling the contact’s GetWorld
Manifold manifold as described at the end of Section 8.1.

void CMyContactListener :: PreSolve (

b2Contact * contact ,

const b2Manifold * oldManifold)

{

b2WorldManifold worldManifold ;

contact ->GetWorldManifold (& worldManifold);

We then declare two b2PointState arrays, state1 and state2. Recall
that each of these has two b2PointStates for the (at most) two possible
contact points. Calling b2GetPointStates tells us what has changed from
the old contact manifold oldManifold that came in as a parameter to the
new contact manifold, which we get by calling contact->GetManifold().
We’re only really interested in state2, we can ignore the rest.

b2PointState state1 [2], state2 [2];

b2GetPointStates (state1 , state2 ,

oldManifold , contact ->GetManifold ());

If state2[i] is b2_addState, then it means that a new contact point
has been created, in which case we want to play a “bonk” sound and dis-
play a star at the contact point. So, we get b2Body* pointers to the two
bodies involved in the contact, bodyA and bodyB, by calling the contact’s
GetFixtureA and GetFixtureB functions to get the fixtures and then call-
ing their GetBody functions.

for(int i=0; i<2; i++)

if(state2[i] == b2_addState){

const b2Body* bodyA =

contact ->GetFixtureA ()-> GetBody ();

const b2Body* bodyB =

contact ->GetFixtureB ()-> GetBody ();

Next, we compute speed, the relative speed of Body A and Body B. We
start by getting a point wp on the worldManifold to measure from, then
calling each body’s GetLinearVelocityFromWorldPoint function to get
their relative velocities vA and vB measured from that point. The velocity
of Body A relative to Body B deltavee is then the vector difference vA – vB.
Finally, speed is the dot product of that vector with the worldManifold

normal:

8.2 • Contact Listeners 209

b2Vec2 wp = worldManifold .points [0];

b2Vec2 vA =

bodyA -> GetLinearVelocityFromWorldPoint(wp);

b2Vec2 vB =

bodyB -> GetLinearVelocityFromWorldPoint(wp);

b2Vec2 deltavee = vA - vB;

float32 speed =

b2Dot(deltavee , worldManifold .normal);

Next, we need to find out what kinds of objects are colliding so we can
play the appropriate sound. For example, anything hitting the cannon
barrel should go “bong,” not “thud.” Remember that when we created
each body, we used the handy userData in its b2BodyDef structure to
hold a pointer to the object’s CGameObject in Object World. We use the
physics body’s GetUserData function to retrieve that pointer now. Notice
that since GetUserData returns the pointer as a void*, we must typecast
it to CGameObject*.

CGameObject * objectA =

(CGameObject *)bodyA ->GetUserData ();

CGameObject * objectB =

(CGameObject *)bodyB ->GetUserData ();

Now that we have object pointers, we can use them to retrieve the sprite
types in local variables typeA and typeB.

SpriteType typeA = UNKNOWN_SPRITE ;

SpriteType typeB = UNKNOWN_SPRITE ;

if(objectA) typeA = (SpriteType)objectA ->m_nSprite ;

if(objectB) typeB = (SpriteType)objectB ->m_nSprite ;

I’m going to use the number of balls, books, and barrels that are colliding
in order to decide what kind of response to make.

int nBallCount =0, nBookCount =0;

if(typeA == BALL_SPRITE)nBallCount ++;

if(typeB == BALL_SPRITE)nBallCount ++;

if(typeA == BOOK_SPRITE)nBookCount ++;

if(typeB == BOOK_SPRITE)nBookCount ++;

BOOL bCannonBarrel =

typeA == CANNONBARREL_SPRITE ||

typeB == CANNONBARREL_SPRITE ;

210 8 • The Collision Module

Based on those numbers, I set starSprite to indicate the color of the star
I’d like to draw. Book-to-ball contacts have a white star, book-to-book a
yellow star, ball-to-ball a magenta star, and everything else a red star.

SpriteType starSprite = REDSTAR_SPRITE ;

if(nBookCount >0 && nBallCount >0)

starSprite = WHITESTAR_SPRITE ;

else if(nBookCount == 2)

starSprite = YELLOWSTAR_SPRITE ;

else if(nBallCount == 2)

starSprite = MAGENTASTAR_SPRITE ;

Now I’m ready to code the contact response. If speed is large enough, I
want to play the appropriate collision sounds and create a star particle at
the collision point wp. First the sounds:

if(speed > 0.5f){

if(nBallCount >0)

g_pSoundManager ->play(THUMP_SOUND);

if(nBookCount >0)

g_pSoundManager ->play (THUMP2_SOUND);

if(bCannonBarrel)

g_pSoundManager ->play(CLANG_SOUND);

Finally, I create the star that I decided on in starSprite.

CParticle * pParticle = (CParticle *)

g_cParticleManager .create(starSprite);

if(pParticle)pParticle ->Set(

D3DXVECTOR2 (PW2RW(wp.x), PW2RW(wp.y)),

500, 1.0f);

} //if

} //if

} // PreSolve

Let’s run an experiment to see when the Contact Listener’s PreSolve
actually gets called. Suppose we drop a single book onto one corner, from
which position it thunks down onto one side, rocks to the right, then the
left, then comes to rest. To be precise,

1. I drop a book tilted slightly counterclockwise so that it will hit the
ground on its bottom left corner (facing the book).

2. The left corner of the book makes contact with the ground. It begins
to pivot clockwise on that corner.

8.2 • Contact Listeners 211

Figure 8.4 • What the dropped book looks like in Render World when the Con-
tact Listener’s PreSolve function is called.

3. The right corner of the book makes contact. Both corners are down,
but the book still has some clockwise angular momentum.

4. The left corner lifts and the book begins to pivot clockwise on its
right corner.

5. The book pivots clockwise until it accedes to the pull of gravity, at
which point it begins to pivot back counterclockwise.

6. The left corner of the book makes contact. Both corners are down,
but the book still has some counterclockwise angular momentum.

7. The right corner lifts and the book begins to pivot counterclockwise
on its left corner.

8. The book pivots counterclockwise until it accedes to the pull of grav-
ity, at which point it begins to pivot clockwise.

9. The right corner of the book makes contact. Both corners are down
and the book has exhausted its angular momentum with all this
thunking around, so it stays that way.

The events that get recorded by PreSolve are listed in Table 8.2. The
first column of that table lists the frame number in which PreSolve gets
called in Physics World. Figure 8.4 shows what the book looks like in
Render World in those animation frames. The white circle with the plus
sign indicates a point that has been added to the contact manifold, the
grey circle indicates a point that has persisted, and the black circle with
the cross indicates a point that has been removed. The numbers are frame
counts that correspond with the frame counts in Table 8.2. The following is
an analysis of the calls to the Contact Listener’s PreSolve function during
the experiment. Coordinates are given in Render World units (pixels), and
they are normalized so that the corner of the book hits at (0, 0). The book
is, you will undoubtedly recall, 54 pixels wide.

Frame 1: b2_addState for point 0 at (0, 0). The corner of the book has
made first contact with the platform. (Table 8.2, line 1 and Fig-
ure 8.4, top row).

212 8 • The Collision Module

S FN State Pt State Pt

N 1 b2_addState (0, 0) – –
N 163 b2_addState (0, 0) – –
N 170 b2_addState (0, 0) – –
N 171 b2_persistState (0, 0) b2_addState (53, 0)
O 172 b2_removeState (0, 0) b2_persistState (53, 0)
N 225 b2_addState (0, 0) b2_persistState (53, 0)
O 226 b2_persistState (0, 0) b2_removeState (53, 0)
N 243 b2_persistState (0, 0) b2_addState (53, 0)

Table 8.2 • The Contact Listener’s PreSolve function gets called with this in-
formation. Column 1 shows whether information came from the old or the new
manifold. Column 2 shows the frame number. Columns 3 and 4 show the state
and the location in Render World of contact point 0. Columns 5 and 6 show the
state and the location in Render World of contact point 1.

Frame 163: b2_addState for point 0 at (0, 0) The contact has probably
shifted enough in Physics World to trigger the Contact Listener but
not enough to actually see in Render World. (Table 8.2, line 2 and
Figure 8.4, top row).

Frame 170: b2_addState for point 0 at (0, 0). Again, the contact has
probably shifted enough in Physics World to trigger the Contact Lis-
tener but not enough to actually see in Render World. (Table 8.2,
line 3 and Figure 8.4, top row).

Frame 171: b2_persistState for point 0 at (0, 0) and b2_addState for
point 1 at (53, 0). For the third time, the contact has probably shifted
enough in Physics World to trigger the Contact Listener but not
enough to actually see in Render World. This tells me that I’d bet-
ter allow for consecutive adds in my code. (Table 8.2, line 4 and
Figure 8.4, top row).

Frame 172: b2_removeState for point 0 at (0, 0) and b2_persistState

for point 1 at (53, 0). The book is rocking on its right corner. (Ta-
ble 8.2, line 5 and Figure 8.4, bottom row).

Frame 225: b2_addState for point 0 at (0, 0) and b2_persistState for
point 1 at (53, 0). The book has both corners on the ground. (Ta-
ble 8.2, line 6 and Figure 8.4, bottom row).

Frame 226: b2_persistState for point 0 at (0, 0) and b2_deleteState

for point 1 at (53, 0). The book is rocking on its left corner this time.
(Table 8.2, line 7 and Figure 8.4, bottom row).

8.3 • AABBs 213

Frame 243: b2_persistState for point 0 at (0, 0) and b2_addState for
point 1 at (53, 0). The book has both corners on the ground, finally.
(Table 8.2, line 8 and Figure 8.4, bottom row).

I’ve simplified things by not giving you the PreSolve calls that are
(b2_persistState, b2_persistState) or (b2_persistState, b2_null

State). Not only are these less interesting, but there are hundreds of
them. In fact, after the book comes to rest in Frame 243, PreSolve gets
a (b2_persistState, b2_persistState) call once per frame, indicating
that the book is (still) still. What can we learn from this analysis? One
is that we should ignore all calls except the ones with a b2_addState (and
possibly a b2_removeState). That given, our code should assume that
it will probably get consecutive b2_addState calls for the same point in
Render World coordinates without a b2_removeState in between.

• 8.3 AABBs
The aim of broad-phase collision detection is to construct a list of object
pairs that may collide with a small number of false positives and no false
negatives. That is, all colliding pairs are in the list, but not much else is.
Naturally, we would like to be able to do it blindingly fast.

In order to achieve these goals, broad-phase collision detection works
with bounding boxes instead of the original object. Each bounding box is
larger than the actual object,4 so it gives false positives, but it has fewer
edges to test on so it is faster. Even better, we can make the collision
tests blindingly fast by aligning the edges of the bounding box with the
world-space axes. This kind of bounding box is called an axially aligned
bounding box, or AABB for short. Figure 8.5 shows two polygonal objects

Figure 8.5 • Two polygon shapes and their AABBs.
...........................

4Obvious exception excepted.

214 8 • The Collision Module

Figure 8.6 • Specifying an AABB using two points.

and their AABBs. Notice that these objects would give a false positive in
broad-phase collision detection since their AABBs collide but the objects
themselves do not.

An AABB can be specified by listing its left and right x-coordinates
xl and rl and its top and bottom y-coordinates yt and yb. Box2D stores
these as two points, the top-right point upperBound and the bottom-right
point lowerBound, as shown in Figure 8.6. We will call these the upper
and lower vertices, respectively. b2AABB is defined in b2Collision.h:

struct b2AABB{

bool IsValid () const; // verify bounds are sorted

b2Vec2 GetCenter () const;

b2Vec2 GetExtents () const; // extents are half -widths

float32 GetPerimeter () const;

void Combine (const b2AABB &); // combine with AABB

void Combine (const b2AABB&,

const b2AABB &); // combine with two AABBs

bool Contains (const b2AABB &) const;

bool RayCast (b2RayCastOutput *,

const b2RayCastInput &) const;

b2Vec2 lowerBound ; // lower vertex

b2Vec2 upperBound ; // upper vertex

};

The first Combine function works in the obvious way. The new left bound,
for example, is the smaller of the left bounds of the two AABBs.

void Combine (const b2AABB& aabb){

lowerBound = b2Min(lowerBound , aabb.lowerBound);

upperBound = b2Max(upperBound , aabb.upperBound);

}

8.3 • AABBs 215

Figure 8.7 • Testing for AABB collision.

The functions b2Min and b2Max used in the above function are defined in
b2Math.h as component-wise min and max as follows:

template <typename T> inline T b2Min(T a, T b){

return a<b? a: b;

}

inline b2Vec2 b2Min(

const b2Vec2& a, const b2Vec2& b)

{

return b2Vec2(b2Min(a.x, b.x), b2Min(a.y, b.y));

}

template <typename T> inline T b2Max(T a, T b){

return a>b? a: b;

}

inline b2Vec2 b2Max(

const b2Vec2& a, const b2Vec2& b)

{

return b2Vec2(b2Max(a.x, b.x), b2Max(a.y, b.y));

}

Two AABBs collide if both coordinates of the upper vertex of one of
them are greater than the corresponding coordinates of the lower vertex
of the other and vice versa (see Figure 8.7). Box2D uses the function
b2TestOverlap in b2Collision.h:

inline bool b2TestOverlap (const b2AABB& a,

const b2AABB& b){

b2Vec2 d1 = b.lowerBound - a.upperBound ;

b2Vec2 d2 = a.lowerBound - b.upperBound ;

if(d1.x>0.0f || d1.y>0.0f)return false;

216 8 • The Collision Module

if(d2.x>0.0f || d2.y>0.0f)return false;

return true;

}

We will make use of functions b2AABB::Combine and b2TestOverlap in
the next section on dynamic trees.

• 8.4 Dynamic Trees
Box2D’s broad-phase collision detection uses a 2D version of the dynamic
bounding volume trees from Nathanael Presson’s Bullet physics engine
[Presson 12]. In the Box2D code, they are simply referred to as dynamic
trees, so to avoid possible confusion when you read the code, I will do the
same here.5 A good place to start reading about them is [Ericson 05],
but by far the best description is in the original paper [Goldsmith and
Salmon 87].

Dynamic trees are full binary trees, that is, every nonleaf node has
exactly two children. Each node of a dynamic tree contains an AABB.
The AABBs in the leaves are the AABBs of the objects in your game.
The AABB in each node is the smallest AABB that contains the AABBs
of its leaves using function b2AABB::Combine from the previous subsec-
tion. Dynamic trees are intended to be used for fast broad-phase collision
detection for AABBs and rays with the AABBs in your game. We will
concentrate on AABB collision detection here. The ray-casting version is
similar enough that you should be able to read it directly from the code
after you’ve mastered this section.

Figure 8.8 shows a dynamic tree for the AABBs at top left of that
diagram. To help you understand, I’ve redrawn it in Figure 8.9 with the
AABBs of the objects in every node, but please remember that it is not
stored that way. Since there are n = 8 AABBs, the dynamic tree has 8
leaves. I’ve made it a complete binary tree, but dynamic trees are not
necessarily complete, even when n is a power of 2. They can be completely
unbalanced to the point where they degenerate to a linked list.

• 8.4.1 Search

Suppose we are given an AABB B, and we want to find which of the AABBs
in the game intersect with it. For example, Figure 8.10 shows B on the
left and the desired result on the right, the three AABBs shown in white.
Remember that we want to compute that result as fast as we can.

...........................
5Although I am tempted to call them DBV-trees for obvious reasons.

8.4 • Dynamic Trees 217

Figure 8.8 • A dynamic tree for the set of AABBs shown at top left.

Figure 8.9 • The dynamic tree from Figure 8.8 drawn with the underlying
AABBs filled in as an aid to comprehension only; they are not actually stored in
the data structure.

218 8 • The Collision Module

Figure 8.10 • Suppose we want to find which AABBs collide with the one on
the left. The answer we’re expecting is the set of three white AABBs shown in
white at right.

Figure 8.11 • Using the dynamic tree from Figure 8.9 to find the AABBs that
intersect the AABB in Figure 8.8. The three leaves with hits (numbered 5, 7,
and 8) correspond to the AABBs that are intersected in Figure 8.10 (right).

8.4 • Dynamic Trees 219

Figure 8.11 shows the process. We start in the root node. Since B
overlaps the AABB in the root node, we look in both of its children. B
does not overlap with its left child’s AABB, so we go to the right child,
C. Since B overlaps with C’s AABB, we test both of its children D and E
and find overlaps in both cases. The left child of D overlaps with B (leaf
number 5), but its right child doesn’t (leaf number 6). Both of the children
of E (leaves number 7 and 8) overlap with B. The AABBs that overlap
with B are therefore the ones in nodes 5, 7, and 8, which, as expected, are
exactly the three white AABBs shown at right in Figure 8.10.

The best dynamic tree for our purpose is one in which the AABB sizes
are small (which means that the AABBs of siblings should be close to-
gether), and the tree itself is very shallow, ideally as close to a complete
binary tree as we can get. Unfortunately, this is very computationally
intensive to achieve. Fortunately, we can fake it and still get good results.

• 8.4.2 Insertion and Deletion

The dynamic tree is called that because6 it needs to be dynamic; that is, it
needs to change when objects move. Box2D cheats by making the AABBs
slightly larger than their enclosed objects. These are called fat AABBs
in the code. Fat AABBs are larger than the objects they surround by a
factor of b2_fatAABBFactor. Objects are allowed to wander within their
fat AABBs without penalty. However, once an object moves outside its fat
AABB, the leaf containing that object is deleted from the tree and then
reinserted with its new fat AABB.

So how do we delete leaves from and insert leaves into a dynamic tree?
Deleting one isn’t too difficult. Suppose we want to delete a leaf node L
with parent P and sibling S. We simply need to remove L, replace P with
S (Figure 8.12), then follow a path from P to the root, recomputing the
combined AABBs along the way. That isn’t too time consuming provided
the tree isn’t too deep.

The mechanics of inserting a node B doesn’t appear too difficult either.
If you think about it, it’s almost the reverse of the deletion algorithm above.
Suppose we’ve found a potential sibling S for N hidden somewhere in the
guts of the dynamic tree. Here’s how we can insert N as the sibling of S,
as shown in Figure 8.13.

1. Create a new parent node P .

2. Replace S in the tree with P .

3. Make S and N the children of P .

4. Follow a path from P to the root adjusting the AABBs.

...........................
6Surprise, surprise.

220 8 • The Collision Module

Figure 8.12 • Deleting a leaf node L from a dynamic tree, before deletion (left)
and after deletion (right). Remove L, replace its parent P with L’s sibling S.

Figure 8.13 • Inserting a new node N into a dynamic tree so that it has sibling
S, before insertion (left) and after insertion (right). Create a new node P , make
it the parent of N and S, and put it in place of S.

The hard part is finding a good sibling S for the new node N (see Fig-
ure 8.14), where “good” means that we should try to keep the time required
for AABB search as small as we can. In order to talk more succinctly about
dynamic tree nodes and their AABBs, let’s adopt the following conventions:

1. If N is a dynamic tree node, N is its AABB.

2. If A and B are AABBs, then A∪B is the smallest AABB containing
both A and B .

As we noted at the end of Section 8.4.1, we can reduce search time by
keeping AABB sizes small. We want to avoid a situation in which N is
very far from S because then the smallest AABB that surrounds them
both, P = A ∪ B , will be very large.

8.4 • Dynamic Trees 221

Figure 8.14 • Left: The AABBs in the dynamic tree in white, and the new
AABB in dark gray. Right: Consider inserting N , the node containing the new
AABB, as a sibling of S,

We do this using a greedy algorithm,7 that is, an algorithm that makes
the best local choices without bothering to compute whether these choices
lead to a global optimum. We proceed from the root of the dynamic tree
down to a leaf, making locally optimal choices at each nonleaf node as to
whether we go left, right, or stay at the current node.

Define the cost of a node S, denoted Γ(S), to be the sum over all of its
children C of the probability of having to do an AABB intersection test
between N and C . We test both the children of S when the intersection
test of N with S succeeds, which happens with probability Area(S)/W ,
where W is the area of the game world. Therefore

Γ(S) = 2 ·Area(S)/W.

(The factor of 2 is because we have to test both children.) The cost of the
whole dynamic tree is defined to be the sum of the costs of its nodes. Note
that the cost of a leaf is zero since it has no children.

Suppose we make a new parent node P for S and N , as shown in
Figure 8.15, with AABB P = N ∪ S . Since P is new, the extra cost
added to the tree by making N the sibling of S is

Γ(P) = Γ(P) = 2 · Γ(N ∪ S)/W.

However, it might be cheaper to push N down to one of S’s children C.
What would that cost?

If C is a leaf, we would replace it with a new node P and make C and
N the children of P , as shown in Figure 8.16. That would increase the
...........................

7If you are unfamiliar with the concept of a greedy algorithm, consult any reputable
algorithms textbook such as [Cormen et al. 01].

222 8 • The Collision Module

Figure 8.15 • Make a new parent node P for S and N with area equal to their
combined areas.

Figure 8.16 • If S’s child C is a leaf, replace it with a new node P , and make C
and N the children of P .

8.4 • Dynamic Trees 223

Figure 8.17 • If S’s child C is not a leaf, estimate the cost of making N a
descendant of C.

area of S from Area(S) to Area(N ∪ S), increasing it by Area(N ∪ S)−
Area(S). This will increase the cost of S by an amount that we will call
the inheritance cost:

CostI = 2 · (Area(N ∪ S)−Area(S))/W.

The cost of the new node P , which has children N and C, will be Γ(N ∪
C)/W . The total increase in cost is therefore

(CostI + Γ(N ∪ C))/W.

If C is not a leaf, we have no way of determining the cost of pushing N
down to the subtree rooted at C exactly, but it is at least

(CostI + Γ(N ∪ C)− Γ(C))/W,

as shown in Figure 8.17. Finally, since all of the costs have a factor of W ,
the area of the game world, we can simply ignore it. The whole procedure
is summarized in Algorithm 4.

Unfortunately, every time an AABB moves outside its fat AABB, it trig-
gers a deletion followed by an insertion, which almost certainly will make
the dynamic tree move out of balance. b2DynamicTree has a Balance func-
tion that rebalances the tree using a tree rotation operation borrowed from
the classical red-black tree8 data structure. If any left child C is 2 deeper

...........................
8Once again, if you are unfamiliar with this concept, consult any reputable algorithms

textbook such as [Cormen et al. 01].

224 8 • The Collision Module

Algorithm 4 • Make S the best sibling of N

Require: S is the root of a nonempty dynamic tree
1: finished← “S is a leaf”
2: while not finished do
3: CostS ← 2 · Γ(N ∪ S)
4: CostI ← 2 · (Γ(N ∪ S)− Γ(S))
5: Suppose S has left child CL and right child CR

6: CostL ← CostI + Γ(N ∪ CL)− Γ(CL)
7: CostR ← CostI + Γ(N ∪ CR)− Γ(CR)
8: finished← CostS < min(CostL, CostR)
9: if not finished then

10: if CostL < CostR then
11: S ← Left child of S
12: else
13: S ← Right child of S
14: end if
15: finished← “S is a leaf”
16: end if
17: end while

than its sibling B, perform a left rotation as described in Figure 8.18 or Fig-
ure 8.19, depending on which of its children is the cause of the discrepancy.
If any right child B is 2 deeper than its sibling C, perform a right rota-
tion as described in Figure 8.20 or Figure 8.21, depending on which of its
children is the cause of the discrepancy. Naturally, the combined AABBs
will need to be recomputed on a path back to the root, which won’t be too
expensive provided the dynamic tree is rebalanced periodically.

Figure 8.18 • If C is 2 deeper than B because of its left child F , perform an
RLL rotation.

8.4 • Dynamic Trees 225

Figure 8.19 • If C is 2 deeper than B because of its right child G, perform an
LLL rotation.

Figure 8.20 • If B is 2 deeper than C because of its left child F , perform an
RRR rotation.

Figure 8.21 • If B is 2 deeper than C because of its right child G, perform an
LRR rotation.

226 8 • The Collision Module

There is one more thing before we close this section on dynamic trees.
While I’ve been talking about AABB area as a measure of the cost of a
dynamic tree node, b2DynamicTree uses AABB perimeter instead, presum-
ably because perimeter is cheaper to compute than area, the latter requiring
a pesky floating-point multiplication. Unfortunately, the variable and func-
tion names are based on the concept of area, for example, b2DynamicTree
has a GetAreaRatio function, and you will find local variables named area,
combinedArea, oldArea, newArea, totalArea, and rootArea scattered
throughout b2DynamicTree.cpp. This leads to a certain amount of cogni-
tive dissonance, but what’s in a name?9

• 8.5 Exercises
1. We saw in Section 8.2 that the Contact Listener is prone to detecting

consecutive b2_addStates for the same point. If you look closely
enough, you can detect evidence of this happening in the Cannon
Game with stars. You’ll see a curious and fleeting “star within a
star” pattern as shown in Figure 8.22. Design a fast and effective
method for preventing “star in star” from happening. Implement
your algorithm in the Cannon Game with stars.

2. For each of the four sets of AABBs in Figure 8.23, starting with an
empty dynamic tree, insert each of the AABBs in the order shown.

Figure 8.22 • Evidence of consecutive b2_addStates detected by the Contact
Listener for the same point in the Cannon Game with stars. See Exercise 1.

Figure 8.23 • AABBs for Exercises 2 and 3.

...........................
9“What’s in a name? That which we call a rose by any other name would smell as

sweet.” William Shakespeare, Romeo and Juliet (II, ii, pp. 1–2).

8.5 • Exercises 227

Figure 8.24 • Dynamic tree for Exercise 4.

3. For each of the four sets of AABBs in Figure 8.23, starting with an
empty dynamic tree, insert each of the AABBs in the reverse of the
order shown.

4. Fill in the AABBs in the nonleaf nodes of the dynamic tree shown in
Figure 8.24.

5. Delete the node indicated with an “X” in the dynamic tree given in
Figure 8.25.

Figure 8.25 • Dynamic tree for Exercise 5.

228 8 • The Collision Module

Figure 8.26 • Dynamic tree for Exercise 6.

6. Insert the node flagged “New node” into the dynamic tree in Fig-
ure 8.26 as a sibling of the indicated leaf node.

Part III

Appendices

This page intentionally left blankThis page intentionally left blank

A
For Math Geeks Only

For the math geeks among you, let’s try to prove the identities

cos(α+ β) = cosα cosβ − sinα sinβ

sin(α+ β) = sinα cosβ + cosα sinβ.

that we used in Section 2.1.4. Actually, I’m going to do the first one
carefully and leave the second one for you, and I’m only going to do it
in the first quadrant, that is, the case where α + β ≤ 90◦. The following
elegant geometric proof is from [Smiley 99].1

Step 1. (Figure A.1, top left.) Start by drawing a right triangle �ABC
with ∠ABC = 90◦, ∠CAB = β, and hypotenuse AC of length ‖AC‖ = 1.
Then, ‖BC‖ = sinβ and ‖AB‖ = cosβ.

Step 2. (Figure A.1, top right.) Assuming that β ≤ 90◦−α, extend�ABC
into a larger right triangle �ABD where ∠ADB = α.

Step 3. (Figure A.1, middle left.) Extend a line from C perpendicular to
AD. Let E be the point where this line intersects AD.

Step 4. (Figure A.1, middle right.) Since the internal angles of a triangle
sum to 180◦, ∠BAD = 90◦−α, which implies that ∠CAD = ∠BAD−β =

...........................
1These identities are one of those horrible things that are easy to prove when you

have heavy machinery (in this case complex numbers will do), but annoyingly intricate
otherwise. Smiley’s proof is the simplest that I know of to date.

231

232 A • For Math Geeks Only

Figure A.1 • The first six steps of Smiley’s geometric proof that cos(α + β) =
cosα cosβ − sinα sin β.

90◦ − α− β. Therefore,

∠ACE = 90◦ − ∠CAD

= 90◦ − (90◦ − α− β)

= α+ β.

Step 5. (Figure A.1, bottom left.) Therefore, since ‖AC‖ = 1, ‖CE‖ =
cos(α+ β).

Step 6. (Figure A.1, bottom right.) Since sinα = ‖CE‖/‖CD‖ and ‖CE‖
= cos(α+ β),

‖CD‖ = cos(α+ β)

sinα
.

233

Figure A.2 • The seventh and last step of Smiley’s geometric proof that
cos(α + β) = cosα cos β − sinα sin β.

Step 7. Here’s where we put it all together. Since ‖AB‖ = cosβ and

‖BD‖ = ‖BC‖+ ‖CD‖ = sinβ +
cos(α+ β)

sinα
,

we can conclude from Figure A.2 that

tanα =
‖AB‖
‖BD‖ =

cosβ

sinβ + cos(α+β)
sinα

.

Now we’re making progress. This means that

sinα

cosα
=

cosβ

sinβ + cos(α+β)
sinα

.

It’s getting a little hairy on the right-hand side of the equation, but hang
in there for a moment. Solving for cos(α + β), we see that

sinβ + cos(α+β)
sinα

cosβ
=

cosα

sinα

sinβ +
cos(α + β)

sinα
=

cosα cosβ

sinα

cos(α + β)

sinα
=

cosα cosβ

sinα
− sinβ

cos(α + β) = cosα cosβ − sinα sinβ,

which is the first identity we were looking for.

234 A • For Math Geeks Only

Figure A.3 • Smiley’s proof that sin(α + β) = sinα cosβ + cosα sin β in one
diagram.

I’m going to leave it at that by saying that similarly, we can show from
Figure A.3 that sin(α + β) = sinα cosβ + cosα sinβ. I’m sure you don’t
want to read the details of that one. Work it out with a pencil if you do.

B
The Blacke Arte of

Program Debugging

The use of the term “bug” to describe a problem with a computer is usually
attributed to the computing pioneer Admiral Grace Murray Hopper in
1947. When colleagues traced a fault in Harvard University’s Mark II
Computer to a moth stuck in Relay 70 of Panel F, she remarked that they
were “debugging” the system. The remains of the moth can still be seen
in the log book entry for that day.

Theodore Rubin once said, “The problem is not that there are problems.
The problem is expecting otherwise and thinking that having problems is
a problem.” That’s true of bugs too. The problem is not that there are
bugs. The problem is expecting otherwise and thinking that having bugs
is a problem. Unfortunately, we spend much more time teaching program-
ming than we do teaching debugging skills even though the professional
programmer typically spends a large fraction of their time debugging. That
tends to make students think that bugs are things to be ashamed of. Steve
McConnell writes, “An average programmer generates 15–50 bugs per 1000
lines of code.”

There are useful debugging tools for programmers, for example, the
debugger that is a part of Visual Studio. This lets you interrupt the com-
putation and examine the contents of memory. Debuggers are good for
catching low-level bugs, but often the big picture is hidden by too much
information (aka “can’t see the forest for the trees”).

235

236 B • The Blacke Arte of Program Debugging

• B.1 The Debug printf

What do you do when your program crashes? Experiment with your pro-
gram and think. Try to get some idea about where in the code the crash
occurs if you can. The first task is to reproduce the bug—find a series of
actions that is guaranteed to make the bug occur every time. That should
give you some clue as to where the bug might be. Reproducing bugs is
quite often very difficult. Some bugs are not easily reproducible. In your
professional life, you may have a Quality Assurance (abbreviated QA) team
tasked with finding bugs, but they may not tell you how to reproduce it.
Knowing how to reproduce it alone may tell you enough about the bug to
figure out what’s causing it. Start by adding printfs that output messages
on function entry and exit. Do this for the suspicious functions, all of them
if you have to. Look at the output file after your program crashes. If you see
an Entering function foo() message and no Exiting function foo()

message, then you know in which function the crash occurred. Then, add
code to localize on which line it happened. When you’ve found the line
of code that’s bad, add code that prints out the values used on that line
before you get to it. Look at the values output immediately before the
crash. Think Hard. Are they right? If not, what should they be? And how
did they get to be bad? The actual cause of the bug may be elsewhere, in
which case you will have to work backwards until you find it.

There are some bugs that can’t be caught with debug printfs, in par-
ticular, bugs in timing and scheduling of multithreaded processes. Adding
debug output will slow down your program and change its execution pro-
file, which may make the bug go away. Try using as few debug outputs as
possible.

Albert Einstein once said, “It’s not that I’m so smart, it’s just that I
stay with problems longer.” That may be true, but it was also that he was
Albert Einstein. The same thing is true with debugging: you have to stick
with it through to the end. After all, as Voltaire said, “No problem can
stand the assault of sustained thinking.” According to Norman Vincent
Peale, “When a problem comes along, study it until you are completely
knowledgeable. Then find that weak spot, break the problem apart, and
the rest will be easy.” That’s often true of debugging. The most challenging
bugs are the ones that take three weeks to find and 30 seconds to fix.

• B.2 Zen and the Art of Debugging
Coding defensively makes a lot of sense. If you’re careful, you can make
sure that the damage caused by a bug is kept localized to one area of the
code. Test for preconditions even when you know they’re going to be true

B.2 • Zen and the Art of Debugging 237

because you made it so. Write your code in small chunks and debug each
chunk before moving on to the next one. Keep old versions. Use a Revision
Control System (RCS) to keep track of them.

Diff is a Unix utility (also available on Windows) that compares two
text files and tells you where they differ. Run diff on the latest two versions
of your code to see what has changed. Selectively comment out new code
until the bug goes away. This can take quite a lot of time.

There is also what I like to call the Facepalm Method or Social Debug-
ging. Walk through your code line by line with another person, explaining
it as you go along. Nine times out of ten, you will spot the bug yourself and
be horribly embarrassed by it. Never underestimate the power of embar-
rassment as a debugging tool. This works best with somebody you would
prefer to impress.

During the long and arduous debugging process, you will be tempted to
stop for coffee, go on Facebook, and generally procrastinate. The impartial
observer might think that you aren’t making any actual progress. However,
the unconscious part of your brain is always on the job. Keeping the
conscious part of your brain distracted can actually help the unconscious
part work on the problem.

When debugging, you should emulate Sherlock Holmes: Gather evi-
dence and use logic. Remember what he said: “When you have eliminated
the impossible, whatever remains, however improbable, must be the truth.”

Douglas Adams in Mostly Harmless said, “We all like to congregate
at boundary conditions. Where land meets water. Where earth meets
air. Where bodies meet mind. Where space meets time. We like to be
on one side and look at the other.” Bugs like to collect around boundary
conditions, so start looking there first. These include

• the first time around a loop,

• the last time around a loop,

• the code following a loop,

• the code at the start of a function,

• the code after a function returns.

For each unit of code (block, function, loop): Are the preconditions
met? That is, do the conditions required for its correct execution hold at
the time of execution? Does it meet the postconditions? That is, does it
meet the conditions required for the correct execution of subsequent code?

Of course there is always the method of last resort: the trace. Grab a
pencil and paper and pretend to be a computer executing your program.
Draw boxes for variables and step through your code putting the computed
values into their boxes. It is a method of desperation because it is so time
consuming and tedious.

As the great philosopher Scooby Doo once said, “Rotsa Ruck!”

This page intentionally left blankThis page intentionally left blank

C
There Are, in Fact,

Dumb Questions

I stop answering dumb questions about programming once my students
reach a certain level of programming skill. Don’t let anybody tell you that
there’s no such thing as a dumb question. My definition of a dumb question
about programming is a question that can be answered by experimenting
with code. I tell the student “Why don’t you code it up and see for your-
self?” They probably assume that I’m being lazy or that I don’t know
the answer, but years later they recognize that moment for what it is, the
transitional point from being a novice to a journeyman programmer. Nat-
urally, I’m not asking them to do anything that I don’t do myself. Here
are two examples from this book.

• C.1 Lies of π
I was excited when my wife brought home a book called Life of Pi by Yann
Martel, thinking that it was about the irrational number π, the ratio of the
circumference of a circle to its diameter. I was a little chagrined when I
found that it was about a man on a lifeboat instead, but I kept reading it
because it has animals in it and I like animals.1

There’s enough known about π to write several books, and in fact,
several books have been written. It’s well established that π is an irrational
number and has an infinite number of digits after the decimal point. You
...........................

1I felt cheated when I realized that they were only metaphorical animals, not real
ones, but fortunately I didn’t realize it until the end.

239

240 C • There Are, in Fact, Dumb Questions

can compute it to as much precision as you’ve got patience for using any
number of algorithms, for example, the Gregory-Leibniz series,

π = 4 ·
∞∑
i=1

(−1)i+1

i
,

and the faster converging Nilakantha series,

π = 3 +

∞∑
i=1

(−1)i+1

i(i+ 1)(2i+ 1)
.

We mostly get by in the Real World with a finite number of digits.
Elementary School kids find that π = 22/7 is perfectly satisfactory for
things that they can make with paper, scissors, and glue. The Box2D
header file b2Settings.h contains a definition of π that has 12 digits,
which is 11 decimal places of accuracy.

#define b2_pi 3.14159265359 f

Being persnickety, I fell to wondering why 12 digits. Why not 11 or 13? Is
12 digits accurate enough? Single precision floating-point numbers effec-
tively have a 24-bit mantissa, which as we saw in Section 5.3 is enough for
about sevenish decimal digits. When rounded to 24 bits,

π = 11.0010010000111111011011,

which in decimal is 3.1415927410125732421875. So while the #define was
made in good faith, the float value that results is actually different in the
seventh decimal place. That means we get an accuracy of seven significant
digits including the digit in front of the decimal point.

#define b2_pi 3.14159265359

(float) b2_pi is 3.1415927410125732421875

Wait a second, is that last value actually right? It doesn’t hurt to check. It
takes only seconds to whomp up a quick C program using union to output
the decimal equivalent of the floating-point representation of b2_pi.

#include <stdio.h>

#define b2_pi 3.14159265359 f

union mung{

int nValue;

C.1 • Lies of π 241

float fValue;

};

int main (){

mung pi;

pi.fValue = b2_pi;

printf ("Pi = %d\n", pi.nValue);

return 0;

}

When we run it, our program outputs 1078530011, and

107853001110 = 0 10000000︸ ︷︷ ︸
exponent

10010010000111111011011︸ ︷︷ ︸
mantissa

.

Therefore, the exponent x is2 1, and the mantissa m is

m = 100100100001111110110112 = 478818710.

According to Section 5.3, this represents the number (1+m/223)2x. Doing
the math,

(1 +m/223)2x = 2 +m/222

= 2 + 4788187/4194394

≈ 2 + 1.1415927410125732421875

= 3.1415927410125732421875,

which is exactly what we expected. A little experimentation will show you
that #define b2_pi 3.1415927f gets the same output of 107853001110,
but #define b2_pi 3.141593f is just not good enough, resulting in an
output of 107853001210. Therefore, I can say quite unequivocally, the last
four digits of the declaration of b2_pi are redundant; 7 digits after the
decimal place are quite enough.

#define b2_pi 3.1415927 f

It turns out that 11 decimal places are sufficient to measure the cir-
cumference of any circle with diameter smaller than that of the Earth with
accuracy down to the millimeter level. The Earth has diameter about
1.3×104 km, let’s round that up to 108 m. A millimeter is 10−3 m. There-
fore, since circumference equals π times diameter, we need π to 8+ 3 = 11
decimal places.
...........................

2Wait a second, I didn’t tell you that the exponent x is stored backwards. That was
a detail you didn’t need to know yet in Section 5.3.

242 C • There Are, in Fact, Dumb Questions

How far can we take this? A galactic civilization might need to mea-
sure the circumference of a circle whose diameter is that of our galaxy
(106 light years = 1022 m) down to the size of a hydrogen atom (10−10 m),
which requires 22 + 10 = 32 decimal places,

π = 3.14159265358979323846264338327950.

Since the diameter of the Universe is reputed to be 1011 light years =
1027 m, and there appears to be3 no particle smaller than 10−35 m, the
maximum number of digits of π that one could ever need is 35 + 27 = 62.
Here it is:

3.14159265358979323846264338327950288419716939937510582097494459.

If you define π to be the ratio of the circumference to the diameter of a
circle, and you insist on a real, actual circle, then all of those programs that
compute π to a million decimal places are simply lies. Coming at it from
another angle, 62 decimal digits is the equivalent of about 206 bits. I would
hazard a guess that Deep Thought4 uses 256-bit floating-point numbers,
maybe 512 bits, just to be on the safe side. Those who argue that it is an
analog computer are unclear on the concept that the Universe is discrete
and so is everything in it. There is also the possibility that Deep Thought
is a quantum computer, but I’m thinking probably not.

• C.2 Quis Custodiet Ipsos Auditores?
“Quis custodiet ipsos custodes?” —Juvenal

Who shall watch the listeners? Me, that’s who. While writing the section
on Contact Listeners (Section 8.2), I decided that to fully understand them,
I needed to actually watch one in action to see what it does. I started with
the code from Chapter 8. First, I went into functions CreateTower and
PlaceBook and made the obvious changes to create a single book at the
right orientation and position. After that, I replaced my Contact Listener’s
PreSolve code in ContactListener.cpp with the following code that calls
function DescribeManifold (described below) twice.

...........................
3Any smaller particle with any meaningful mass would have radius less than its

Schwartzchild radius, and would therefore be a black hole.
4The computer that determined that the answer to the question of life, the universe,

and everything is 42.

C.2 • Quis Custodiet Ipsos Auditores? 243

void CMyContactListener :: PreSolve (

b2Contact * contact , const b2Manifold * oldManifold)

{

b2Manifold * newManifold = contact ->GetManifold ();

b2PointState state1 [2], state2 [2];

b2GetPointStates (state1 , state2 ,

oldManifold , newManifold);

DescribeManifold ("Old", oldManifold , state1);

DescribeManifold ("New", newManifold , state2);

} // PreSolve

Function DescribeManifold prints out a manifold’s contact points by call-
ing functions DescribeState and DescribePoint (both described below)
twice each.

void DescribeManifold (const char* type ,

const b2Manifold * m, b2PointState state []){

if (!(state [0] == b2_persistState &&

state [1] == b2_persistState) &&

!(state [0] == b2_persistState &&

state [1] == b2_nullState) &&

!(state [0] == b2_nullState &&

state [1] == b2_persistState) &&

!(state [0] == b2_nullState &&

state [1] == b2_nullState)

){

b2Vec2 wp0 = m->points [0]. localPoint ;

b2Vec2 wp1 = m->points [1]. localPoint ;

int pointcount = m->pointCount ;

printf ("%s&%d&", type , g_nFrameNumber);

if(pointcount <1)

printf ("&");

else{

DescribeState (state [0]);

printf ("&");

DescribePoint (wp0);

} //else

printf ("&");

244 C • There Are, in Fact, Dumb Questions

if(pointcount <2)

printf ("&");

else{

DescribeState (state [1]);

printf ("&");

DescribePoint (wp1);

} //else

printf ("\\\\\n");

} //if

} // DescribeManifold

Function DescribePoint converts a PhysicsWorld point into Render World
units, normalizes it so that (26, 31) is the origin, and prints it out.

void DescribePoint (const b2Vec2 p){

const int XOFFSET = 26;

const int YOFFSET = 31;

printf ("(%d,%d)",

(int)(p.x*10.0f + 0.5f) + XOFFSET ,

(int)(p.y*10.0f + 0.5f) + YOFFSET);

} // DescribePoint

Function DescribeState prints out a b2PointState.

void DescribeState (b2PointState s){

switch(s){

case b2_nullState :

printf (" b2_nullState ");

break;

case b2_addState :

printf (" b2_addState ");

break;

case b2_persistState :

printf (" b2_persistState ");

break;

case b2_removeState :

printf (" b2_removeState ");

break;

} // switch

} // DescribeState

This is what it outputs, all ready to be put into a LATEX table with a little
extra formatting. That’s how I got Table 8.2.

C.2 • Quis Custodiet Ipsos Auditores? 245

N&1& b2_addState &(0 ,0)&&\\

N&163& b2_addState &(0 ,0)&&\\

N&170& b2_addState &(0 ,0)&&\\

N&171& b2_persistState &(0 ,0)& b2_addState & (53 ,0)\\

O&172& b2_removeState &(0 ,0)& b2_persistState &(53 ,0)\\

N&225& b2_addState &(0,0)& b2_persistState &(53 ,0)\\

O&226& b2_persistState &(0 ,0)& b2_removeState &(53 ,0)\\

N&243& b2_persistState &(0 ,0)& b2_addState &(53 ,0)\\

I also wanted to get some screenshots that are synchronized with the
Contact Listener’s PreSolve rather than faking it all with Paint.NET, so
I modified the Renderer code (which you don’t have access to) to put a
frame number down near the book so I could get the matching screenshots
in Figure 8.4. I ran the experiment while using a screen capture program
to make a movie of the program running, while simultaneously saving the
text output into a file. Finally, I used a movie editing program to grab the
frames I wanted out of the movie.

If there’s something you don’t understand about a feature in a pro-
gramming language or a programming library like Box2D, you should ex-
periment with it. Naturally, you can and probably will get into a whole lot
of trouble along the way because you don’t actually understand the thing
you’re trying to experiment with, but that’s how you learn.

When you think about it, that’s the reason why you do any kind of
experiment, isn’t it? The contrived experiments that you did in school
where you know what the answer is beforehand are nothing but a pale
shadow of the real thing.

This page intentionally left blankThis page intentionally left blank

D
Bullet Physics

The Bullet physics manual tells us that “Bullet Physics is a professional
Open Source collision detection, rigid body and soft body dynamics li-
brary.” It consists of Open Source C++ code released under the Zlib license
and is free for any commercial use on all platforms including Playstation
3, XBox 360, Wii, PC, Linux, Mac OSX and iPhone. Bullet physics is
a lot more sophisticated that Box2D, but once you start working with it,
you will find that they have some concepts in common, for example, where
Box2D has the Physics World b2World, Bullet physics has the Dynamics
World btDiscreteDynamicsWorld. Tables D.1 and D.2 contain a few more
equivalences.

Box2D Bullet Physics

Physics World Dynamics World
Joint Constraint
Body Rigid Body
Body Definition Rigid Body Construction Info
Kinematic body Kinematic rigid body
Dynamic body Dynamic rigid body
Static body Static rigid body
Shape Collision shape

Table D.1 • Bullet equivalents for some Box2D concepts.

Box2D Bullet Physics

b2World btDiscreteDynamicsWorld

b2Body btRigidBody

b2BodyDef btRigidBodyConstructionInfo

b2Shape btCollisionShape

Table D.2 • Bullet equivalents for some Box2D classes.

247

248 D • Bullet Physics

• D.1 Getting Started
You can download Bullet physics from [Presson 12]. Once you have done
that, add the following projects to your Visual Studio Solution:

1. BulletDynamics.vcxproj,

2. BulletCollision.vcxproj,

3. LinearMath.vcxproj.

Next,

1. add the include path Bullet-2.79/src,

2. add the library path Bullet-2.79/lib,

3. add to your source file the line

#include "btBulletDynamicsCommon.h"

Check out CcdPhysicsDemo to see how to create a btDiscreteDynamics
World, btCollisionShape, btMotionState, and btRigidBody. Call step
Simulation on the Dynamics World once per frame of animation, and
synchronize the world transform for your graphics object.

Basic order of operations:

1. Create Core Objects

• btDefaultCollisionConfiguration.

• btCollisionDispatcher.

• btBroadphaseInterface.

• btSequentialImpulseConstraintSolver.

• btDiscreteDynamicsWorld.

2. Physics Loop (repeat until done)

(a) Add any new rigid bodies, soft bodies, etc.

(b) Modify physics parameters.

(c) Step simulation.

3. Clean Up

(a) Delete objects created in Physics Loop.

(b) Clear various arrays.

(c) Delete core objects.

D.2 • The Dynamics World 249

• D.2 The Dynamics World

ADynamics World provides a high-level interface that manages your physics
objects and constraints and implements the update of all objects each
frame. There are a number of things to declare first, however. Declare
the default Collision Configuration.

btDefaultCollisionConfiguration*

collisionConfiguration = new

btDefaultCollisionConfiguration();

Use the Collision Configuration to declare the default Collision Dispatcher:

btCollisionDispatcher *

dispatcher = new

btCollisionDispatcher (

collisionConfiguration);

Declare a broad-phase Interface:

btBroadphaseInterface *

overlappingPairCache = new

btDbvtBroadphase ();

Declare the default Constraint Solver:

btSequentialImpulseConstraintSolver*

solver = new

btSequentialImpulseConstraintSolver;

Now, you can declare the Dynamics World.

btDiscreteDynamicsWorld*

dynamicsWorld = new

btDiscreteDynamicsWorld(

dispatcher , overlappingPairCache ,

solver , collisionConfiguration);

250 D • Bullet Physics

• D.3 Adding Objects

To construct a btRigidBody or btCollisionObject, you need to pro-
vide mass (positive for dynamic moving objects and zero for static ob-
jects), CollisionShape (such as Box, Sphere, Cone, Convex Hull, or
Triangle Mesh), and material properties (such as friction and restitution).
You can then add it to the btDynamicsWorld. First, we define its mass
and local inertia.

btScalar mass (1.f);

btVector3 localInertia (0, 0, 0);

Then, we define its MotionState.

btTransform startTransform ;

startTransform .setIdentity ();

startTransform .setOrigin (

btVector3 (2, 10, 0));

btDefaultMotionState *

myMotionState = new

btDefaultMotionState (

startTransform);

Finally, we declare its collision shape.

btCollisionShape * colShape = new

btSphereShape (btScalar (1.0));

colShape ->calculateLocalInertia (

mass , localInertia);

Now, we can make an rbInfo structure filled in with all of the information
about the required body and use it to declare the rigid body body.

btRigidBody :: btRigidBodyConstructionInfo

rbInfo(mass , myMotionState , colShape ,

localInertia);

btRigidBody * body = new

btRigidBody (rbInfo);

dynamicsWorld -> addRigidBody (body);

D.4 • Rigid Body Dynamics 251

• D.4 Rigid Body Dynamics
Rigid body dynamics is implemented on top of the collision-detection mod-
ule. It adds forces, mass, inertia, velocity, and constraints. The main rigid
body object is btRigidBody, which is derived from btCollisionObject

so that it inherits its world transform, friction, and restitution and adds
linear and angular velocity. btTypedConstraint is the base class for rigid
body constraints, including

• btHingeConstraint,

• btPoint2PointConstraint,

• btConeTwistConstraint,

• btSliderConstraint,

• btGeneric6DOFConstraint.

Moving objects must have nonzero mass and inertia.
There are three different types of rigid bodies in Bullet. Dynamic rigid

bodies have positive mass, and on every simulation frame, they update
their world transform. Static rigid bodies have zero mass, cannot move,
but can collide. Kinematic rigid bodies have zero mass, can be animated
by the user, but there will be only one-way interaction. Dynamic objects
will be pushed away by kinematic rigid bodies, but there is no influence
from them.

The world transform of a rigid body is, in Bullet, always equal to its
center of mass, and its basis also defines its local frame for inertia. The local
inertia depends on the shape, and the btCollisionShape class provides a
method to calculate the local inertia, given a mass. This world transform
has to be a rigid body transform, which means it should contain no scaling,
shear, etc. If the collision shape is not aligned with the center of mass
transform, it can be shifted to match with a btCompoundShape, using the
child transform to shift the child collision shape.

• D.5 Motion States
Motion states are a way for Bullet to get the world transform of objects
being simulated into the rendering part of your game. Your game loop will
iterate through all the objects before each frame render. For each object,
update the position of the render object from the physics body using motion
states. Other benefits of motion states are as follows:

• Computation involved in moving bodies around is only done for bod-
ies that have moved.

252 D • Bullet Physics

• You don’t just have to do render stuff in them. They could be effective
for notifying network code that a body has moved and needs to be
updated across the network.

• Interpolation is usually only meaningful in the context of something
visible on screen. Bullet manages body interpolation through motion
states.

Motion states are used in two places in Bullet.

1. When a body is first created, Bullet gets the initial position of a
body from its motion state when the body enters the simulation,
calls getWorldTransform with a reference to the variable it wants
you to fill with transform information.

2. After the first update, during simulation, Bullet calls the motion state
for a body to move it around. It calls setWorldTransform with the
transform of the body for you to update your object appropriately.
To implement one, derive a class from btMotionState, and override
getWorldTransform and setWorldTransform.

Although recommended, it is not necessary to derive your own motion
state from btMotionState. Bullet provides a default MotionState for you.
Simply construct it with the default transform of your body:

btDefaultMotionState * ms = new

btDefaultMotionState ();

• D.6 Render Frames and Physics Frames
Once per render frame, call stepSimulation on the Dynamics World. The
Dynamics World automatically takes into account variable time step by
performing interpolation instead of simulation for small time steps. It uses
an internal fixed time step of 60 hertz. Function stepSimulation will per-
form collision detection and physics simulation. It updates the world trans-
form for active objects by calling the btMotionState’s setWorldTransform
function.

By default, Bullet physics simulation runs at an internal fixed frame rate
of 60 hertz. Your render loop will have a different or even variable frame
rate. To decouple the render frame rate from the simulation frame rate,
an automatic interpolation method is built into stepSimulation. If the
application delta time is smaller then the internal fixed time step, Bullet
will interpolate the world transform and send it to the btMotionState

without performing physics simulation. If the application time step is larger

D.6 • Render Frames and Physics Frames 253

than 60 hertz, one or more simulation steps can be performed during each
stepSimulation call. You can limit the maximum number of simulation
steps by passing a maximum value as second argument.

This page intentionally left blankThis page intentionally left blank

Bibliography

[Catto 11] Erin Catto. “Box2D v2.2.0 User Manual.” http://box2d.org/manual.
pdf, 2007–2011.

[Catto 12] Erin Catto. “Box2D: A 2D Physics Engine for Games.” http://box2d.
org/, last accessed 2012.

[Cormen et al. 01] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest,
and Clifford Stein. Introduction to Algorithms, Second edition. Cambridge,
MA: MIT Press and McGraw-Hill Book Company, 2001.

[Dunn and Parberry 11] Fletcher Dunn and Ian Parberry. 3D Math Primer for
Graphics and Game Development, Second edition. Natick, MA: A K Peters,
2011.

[Ericson 05] Christer Ericson. Real-Time Collision Detection. San Francisco:
Morgan Kaufman, 2005.

[Goldsmith and Salmon 87] Jeffrey Goldsmith and John Salmon. “Automatic
Creation of Object Hierarchies for Ray Tracing.” IEEE Computer Graphics
and Applications 7:5 (1987), 14–20.

[Parberry et al. 07] Ian Parberry, Jeremy R. Nunn, Joseph Scheinberg, Erik Car-
son, and Jason Cole. “SAGE: A Simple Academic Game Engine.” In Pro-
ceedings of the Second Annual Microsoft Academic Days on Game Devel-
opment in Computer Science Education, pp. 90–94. http://larc.unt.edu/ian/
Cruise2007/madgdcse2007.pdf, 2007.

[Parberry 97] Ian Parberry. “Knowledge, Understanding, and Computational
Complexity.” In Optimality in Biological and Artificial Networks?, edited
by D. S. Levine and W. R. Elsberry, Chapter 8, pp. 125–144. Hillsdale, NJ:
Lawrence Erlbaum Associates, 1997.

[Parberry 12] Ian Parberry. “Intro to Game Physics with Box2D.” http://larc.
unt.edu/ian/books/gamephysics/, 2012.

255

256 Bibliography

[Presson 12] Nathanael Presson. “Bullet Physics Library.” http://bulletphysics.
org/, last accessed 2012.

[Smiley 99] Leonard M. Smiley. “Proof without Words: Geometry of Subtraction
Formulas.” Mathematical Magazine 72 (1999), 366.

[Stroustrup 97] Bjarne Stroustrup. The C++ Programming Language, Third
edition. Reading, MA: Addison-Wesley, 1997.

In
trod

u
ction to G

am
eP

hysics with B
ox2D

Introduction to
Game Physics

with Box2D
Ian Parberry

Introduction to
Game Physics
with Box2D

Ian Parberry

Computer Game Programming

Written by a pioneer of game development in academia, Introduction
to Game Physics with Box2D covers the theory and practice of 2D
game physics in a relaxed and entertaining yet instructional style.
It offers a cohesive treatment of the topics and code involved in
programming the physics for 2D video games.

Focusing on writing elementary game physics code, the first half
of the book helps you grasp the challenges of programming game
physics from scratch, without libraries or outside help. It examines
the mathematical foundation of game physics and illustrates how it is
applied in practice through coding examples. The second half of the
book shows you how to use Box2D, a popular open source 2D game
physics engine. A companion website provides supplementary
material, including source code and videos.

This book helps you become a capable 2D game physics program-
mer through its presentation of both the theory and applications of
2D game physics. After reading the book and experimenting with
the code samples, you will understand the basics of 2D game physics
and know how to use Box2D to make a 2D physics-based game.

Parberry.indd 1 12/18/12 10:45 PM

	Cover
	Copyright
	Contents
	Preface
	1. Read Me First
	I. Introduction to Game Physics
	2. Mathematics for Game Physics
	3. A Rigid Body Physics Game
	4. A Soft Body Physics Toy

	II. Game Physics with Box2D
	5. Getting Started
	6. A Tale of Three Modules
	7. The Cannon Game
	8. The Collision Module

	III. Appendices
	A. For Math Geeks Only
	B. The Blacke Arte of Program Debugging
	C. There Are, in Fact, Dumb Questions
	D. Bullet Physics

	Bibliography

